
Fermilab

Computing Division
Fermi National Accelerator Laboratory

GU0014C

Complete Guide and Reference Manual for
UPS, UPD and UPP v4

Part IV: Product Developer’s Guide and
Part VIII: Developer’s Reference

Release 2.0

June 30, 2000

Compiled by Anne Heavey

ABSTRACT

This manual documents the standard methodology for UNIX product support at Fermilab, which
is implemented via the utilities UPS (UNIX Product Support), UPD (UNIX Product Distribution),
and UPP (UNIX Product Poll). These utilities were significantly redesigned for version v4, which
was initially released in 1998, and have continued to be revised since then. The latest release as of
this writing is v4_5_2. This document supersedes GU0014 “UPS and UPD v4 Reference Man-
ual”, released June 5, 1998.

This part of the document (GU0014C) includes a guide and reference manual for product develop-
ers.

Revision Record

This document and associated documents and programs, and the material and data contained therein, were developed
under the sponsorship of an agency of the United States government, under D.O.E. Contract Number EY-76-C-02-
3000 or revision thereof. Neither the United States Government nor the Universities Research Association, Inc. nor
Fermilab, nor any of their employees, nor their respective contractors, subcontractors, or their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for accuracy, completeness or usefulness
of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately-
owned rights. Mention of any specific commercial product, process, or service by trade name, trademark,
manufacturer, supplier, or otherwise, shall not, nor is it intended to, imply fitness for any particular use, or constitute
or imply endorsement, recommendation, approval or disapproval by the United States Government or URA or
Fermilab. A royalty-free, non-exclusive right to use and disseminate same for any purpose whatsoever is expressly
reserved to the U.S. and the U.R.A. Any further distribution of this software or documentation, parts thereof, or other
software or documentation based substantially on this software or parts thereof will acknowledge its source as
Fermilab, and include verbatim the entire contents of this Disclaimer, including this sentence.

May 1997 Original Release 1.0 (for UPS v3 and UPD v2)

August 1997 Revisions 1.1 and 1.1a (for UPS v3 and UPD v2)

June 1998 Release 1.0 for UPS and UPD v4

December 1999 Draft release 2.0 for UPS/UPD/UPP v4. Part VI Command Reference only

June 2000 Release 2.0 for UPS, UPD and UPP v4 (current as of v4_5_2)

Acknowledgments

The redesign and redevelopment of UPS and its companion products in preparation for Fermilab’s
Run II involved a substantial commitment of resources from the Computing Division in 1997-98.
Special thanks to Don Petravick (HPPC), Ruth Pordes (OLS), and Dane Skow (OSS) for providing
talented and motivated members of their groups to accomplish this task. Since the initial release of
UPS/UPD v4 in 1998, development has been continuing, and we are at version v4_5_2 as of this
writing.

The redevelopment effort was led by Eileen Berman. With her, the principal designers and
developers of UPS/UPD v4 included David Fagan, Marc Mengel, Lars Rasmussen and Margaret
Votava. Other contributors to the new design included Lauri Loebel Carpenter, Rob Harris, Alan
Jonckheere, Art Kreymer, Liz Sexton-Kennedy. Other contributors to the coding effort included
Chuck Debaun, Paul Russo and Don Walsh.

Contributors in the areas of code review, testing, documentation review and deployment included
Lauri Loebel Carpenter, Chuck Debaun, Lisa Giacchetti, Alan Jonckheere, Art Kreymer, Liz
Sexton-Kennedy, Mike Stolz, Don Walsh and Gordon Watts, in addition to the development team.
Special thanks go to Marc Mengel and Margaret Votava for contributing all the updated UPD and
UPP information included in the first release of this manual for UPS/UPD v4.

Wayne Baisley and Marc Mengel are currently responsible for on-going support and development
of UPS/UPD, and thanks go to them for providing quite a bit of updated information for this
release of the manual. Thanks are also due to Wayne and Marc as well as to Joy Hathaway, Lauri
Loebel Carpenter and Cindy Wike for reviewing portions of the documentation and providing
feedback.

Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014C) TOC-1

Table of Contents for Parts IV and VIII

About this Manual . INT-1
Document Structure, Purpose and Intended Audiences. INT-1
Availability . INT-3
Updates. INT-3
Conventions . INT-3
Your Comments are Welcome! . INT-5

Part IV: Product Developer’s Guide

Chapter 15: UPS Product Development: General Considerations 15-1
15.1 Product Development Considerations and Recommendations 15-1

15.1.1 All Products (Locally Developed and Third Party) 15-1
15.1.2 Products that You Develop . 15-2
15.1.3 Third-Party Products Requiring a Hard-Coded Path 15-3

15.2 Tools for Developing and/or Packaging Products 15-5
15.2.1 Buildmanager . 15-5
15.2.2 CVS . 15-5
15.2.3 Template_product . 15-6

15.3 Directory Structure for a UPS Product Instance 15-6

Chapter 16: Building UPS Products . 16-1
16.1 Basic Steps for Making a UPS Product . 16-1

16.1.1 Build the Directory Hierarchy . 16-2
16.1.2 Create the Table File . 16-2
16.1.3 Declare the Product to your Development UPS Database 16-2
16.1.4 Copy the Product Executable to the bin Directory 16-3
16.1.5 Provide Product man Pages . 16-3
16.1.6 Test the Product . 16-4

16.2 Specifics for Different Categories of Products 16-4
16.2.1 Unflavored Scripts . 16-4
16.2.2 Pre-built Binaries . 16-5
16.2.3 Products Requiring Build (In-House and Third-Party) 16-6
16.2.4 Overlaid Products . 16-7

TOC-2 Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014C)

16.3 Sample Auxiliary Files . 16-8
16.3.1 README . 16-8
16.3.2 INSTALL_NOTE . 16-9
16.3.3 RELEASE_NOTES . 16-9

Chapter 17: Making Products Available For Distribution 17-1
17.1 Product Distribution Overview . 17-1
17.2 Creating Product Tar Files . 17-2
17.3 Adding a Product . 17-3

17.3.1 Product Categories Defined for KITS . 17-3
17.3.2 Examples . 17-4

17.4 Adding an Independent Table File . 17-5
17.5 Replacing a Component (Table File or ups Directory) 17-6
17.6 Adding/Changing a Chain . 17-7
17.7 Deleting a Product or Component . 17-8
17.8 Cloning a Product . 17-8
17.9 Including Source in one of Fermilab’s CVS Repositories 17-9
17.10 Product Announcement Policies . 17-10

Chapter 18: Using template_product to Build and Distribute UPS Products

 . 18-1
18.1 Overview . 18-1
18.2 Accessing template_product . 18-2
18.3 Cloning template_product . 18-2
18.4 The Top-Level Makefile . 18-3
18.5 Inserting your Product into the Template . 18-4
18.6 Building the Product . 18-4

18.6.1 Add Build Instructions . 18-4
18.6.2 Run the Initial Build . 18-4
18.6.3 Add Build Instructions to Top-Level Makefile 18-4
18.6.4 Rebuild Instructions . 18-5

18.7 Testing your Product . 18-5
18.8 Customizing your Tar File . 18-5
18.9 Adding your Product to a Distribution Node 18-6

18.9.1 Add Product to fnkits . 18-7
18.9.2 Specify Multiple Flavors . 18-7

18.10 Adding your Product Source to a CVS Repository 18-8
18.11 Removing your Product from a Distribution Node 18-8

Chapter 19: Checklist for Building and Distributing Products 19-1
19.1 Pre-build Checklist . 19-1
19.2 Build the Product . 19-2
19.3 Test the Product . 19-2
19.4 Distribute to fnkits as “test” . 19-3
19.5 Announce the Product . 19-3
19.6 Distribute to fnkits as “current” . 19-4

Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014C) TOC-3

Part VIII: Developer’s Reference

Chapter 33: Actions and ACTION Keyword Values 33-1
33.1 Overview of Actions . 33-1
33.2 UPS Command Actions . 33-1

33.2.1 UPS Commands as Keyword Values . 33-1
33.2.2 “Uncommands” as Keyword Values . 33-2

33.3 Chain Actions . 33-3
33.3.1 Chains as Keyword Values . 33-3
33.3.2 “Unchains” as Keyword Values . 33-3

33.4 The “Unknown Command” Handler . 33-3
33.5 Actions Called by Other Actions . 33-4

Chapter 34: Functions used in Actions . 34-1
34.1 Overview of Functions . 34-1
34.2 Reversible Functions . 34-1
34.3 Function Descriptions . 34-2

34.3.1 addAlias . 34-2
34.3.2 doDefaults . 34-3
34.3.3 envAppend . 34-3
34.3.4 envPrepend . 34-4
34.3.5 envRemove . 34-4
34.3.6 envSet . 34-5
34.3.7 envSetIfNotSet . 34-5
34.3.8 envUnset . 34-5
34.3.9 exeAccess . 34-6
34.3.10 exeActionOptional . 34-6
34.3.11 exeActionRequired . 34-6
34.3.12 execute . 34-7
34.3.13 fileTest . 34-7
34.3.14 pathAppend . 34-8
34.3.15 pathPrepend . 34-8
34.3.16 pathRemove . 34-9
34.3.17 pathSet . 34-9
34.3.18 prodDir . 34-9
34.3.19 setupEnv . 34-10
34.3.20 setupOptional . 34-10
34.3.21 setupRequired . 34-10
34.3.22 sourceCompileOpt . 34-11
34.3.23 sourceCompileReq . 34-11
34.3.24 sourceOptCheck . 34-12
34.3.25 sourceOptional . 34-13
34.3.26 sourceReqCheck . 34-13
34.3.27 sourceRequired . 34-14
34.3.28 unAlias . 34-14
34.3.29 unProdDir . 34-14

TOC-4 Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014C)

34.3.30 unsetupEnv . 34-15
34.3.31 unsetupOptional . 34-15
34.3.32 unsetupRequired . 34-16
34.3.33 writeCompileScript . 34-16

34.4 Functions under Consideration for Future Implementation 34-17
34.5 Examples of Functions within Actions . 34-18

34.5.1 A setup Action . 34-18
34.5.2 A “declare as current” Action . 34-18

34.6 Local Read-Only Variables Available to Functions 34-18
34.6.1 List of Current Read-Only Variables . 34-19
34.6.2 Read-Only Variables under Consideration for the Future 34-21

Chapter 35: Table Files . 35-1
35.1 About Table Files . 35-1
35.2 When Do You Need to Provide a Table File? 35-1
35.3 Recommendations for Creating Table Files . 35-2
35.4 Table File Structure and Contents . 35-2

35.4.1 Basic Structure . 35-2
35.4.2 Grouping Information . 35-3
35.4.3 The Order of Elements . 35-3

35.5 Product Dependencies . 35-4
35.5.1 Defining Dependencies . 35-4
35.5.2 Product Dependency Conflicts . 35-4

35.6 Table File Examples . 35-6
35.6.1 Example Illustrating Use of FLAVOR=ANY 35-6
35.6.2 Example Showing Grouping . 35-6
35.6.3 Example with User-Defined Keywords 35-7
35.6.4 Examples Illustrating ExeActionOpt Function 35-8

Chapter 36: Scripts You May Need to Provide with a Product 36-1
36.1 configure and unconfigure . 36-1
36.2 tailor . 36-3
36.3 current and uncurrent . 36-3
36.4 start and stop . 36-3

Chapter 37: Use of Compile Scripts in Table Files 37-1
37.1 Overview . 37-1
37.2 Usage Information . 37-1

Chapter 38: Creating and Formatting Man Pages 38-1
38.1 Creating the Source Document (Unformatted) 38-2

38.1.1 Source File Format . 38-2
38.1.2 Man Page Information Categories . 38-3
38.1.3 Example Source File . 38-4

38.2 Formatting the Source File . 38-5
38.2.1 nroff . 38-5
38.2.2 groff . 38-6

38.3 Converting your Man Page to html Format . 38-6

Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014C) TOC-5

Glossary . GLO-1

Index . IDX-1

TOC-6 Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014C)

Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014C) TOC-7

Table of Contents for Complete Guide

About this Manual . INT-1
(This introductory chapter is listed in the front section of the table of contents.)

Part I: Overview and End User’s Guide

Chapter 1: Overview of UPS, UPD and UPP v4 . 1-1
1.1 Introduction to UPS, UPD and UPP . 1-1
1.2 Motivation for the UPS Methodology . 1-2
1.3 UPS Products . 1-3

1.3.1 Versions . 1-3
1.3.2 Flavors . 1-3
1.3.3 Qualifiers . 1-4
1.3.4 Product Instances . 1-4
1.3.5 Chains . 1-4
1.3.6 Product Dependencies . 1-5
1.3.7 Product Overlays . 1-6

1.4 UPS Database Overview . 1-6
1.4.1 UPS Database Files . 1-6
1.4.2 UPS Database Structure . 1-7

1.5 Using UPS Without a Database . 1-7
1.6 UPS and UPD Commands . 1-8

1.6.1 Syntax . 1-8
1.6.2 Defaults . 1-8

1.7 The UPS Environment . 1-9
1.7.1 Initializing the UPS Environment . 1-9
1.7.2 Changes UPS Makes to your Environment 1-10

Chapter 2: UPS Operations for the End User . 2-1
2.1 Determining your Machine’s Flavor . 2-1
2.2 Listing Product Information in a Database . 2-2

2.2.1 Formatted Output Style . 2-3
2.2.2 Condensed Output Style . 2-3
2.2.3 Examples . 2-4

2.3 Finding a Product’s Dependencies . 2-7

TOC-8 Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014C)

2.4 Setting up a Product . 2-8
2.4.1 The setup Command for the Typical Case 2-9
2.4.2 When You Need to Specify Other Options 2-9

2.5 Running Unsetup on a Product . 2-10

Part II: Product Installer’s Guide

Chapter 3: General Product Installation Information 3-1
3.1 Installation Methods for UPS Products . 3-1

3.1.1 UPD . 3-1
3.1.2 UPP . 3-2
3.1.3 FTP . 3-2

3.2 User Node Registration for KITS . 3-2
3.3 What You Need to Know about Your System’s UPD Configuration . . 3-3

3.3.1 Location of UPD Configuration File . 3-3
3.3.2 Where Products Get Declared . 3-4
3.3.3 Where Products Get Installed . 3-4

3.4 Declaring an Instance Manually . 3-5
3.4.1 The ups declare Command . 3-5
3.4.2 Examples . 3-6

3.5 Installation FAQ . 3-7
3.5.1 What File Permissions Get Set? . 3-7
3.5.2 You’re Ready to Install: Should you Declare Qualifiers? 3-8
3.5.3 What if an Install Gets Interrupted? . 3-8
3.5.4 What if a Product was Installed under a Different Name? 3-8

3.6 Post-Installation Procedures . 3-9
3.6.1 Configuring a Product . 3-9
3.6.2 Tailoring a Product . 3-9

3.7 Networking Restrictions at your Site . 3-9
3.7.1 Proxying Webserver . 3-9
3.7.2 Firewall for Incoming TCP Connections 3-10

Chapter 4: Finding Information about Products on a Distribution Node . 4-1
4.1 Listing Products on a Distribution Node . 4-1

4.1.1 Using UPD . 4-1
4.1.2 Using UPP . 4-3

4.2 Listing Product Dependencies on a Distribution Node 4-5
4.3 Information about Products in KITS . 4-6

4.3.1 Access Restrictions and Product Categories 4-6
4.3.2 Product Pathnames for FTP Access . 4-7

4.4 Special Instructions for Proprietary Products . 4-8

Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014C) TOC-9

Chapter 5: Installing Products Using UPD . 5-1
5.1 The upd install Command . 5-1

5.1.1 Command Syntax . 5-1
5.1.2 Passing Options to the Local ups declare Command 5-2

5.2 How UPD Selects the Database . 5-2
5.2.1 Database Selection Algorithm . 5-2
5.2.2 Database Selection for Dependencies . 5-3
5.2.3 Selecting a Database for Development or Testing 5-3

5.3 Checklist for Installing a Product using UPD . 5-3
5.4 Examples . 5-4

5.4.1 Install a Product Using Default Database 5-4
5.4.2 Install a Product, Specifying Database . 5-5
5.4.3 Install a Product and All Dependencies . 5-5
5.4.4 Install a Product and No Dependencies . 5-7
5.4.5 Install a Product and Required Dependencies Only 5-7

Chapter 6: Installing Products Using UPP . 6-1
6.1 Overview of Using UPP to Install Products . 6-1
6.2 Creating a UPP Subscription File . 6-1

6.2.1 Create the Header . 6-2
6.2.2 Identify the Product . 6-2
6.2.3 Trigger the Product Installation . 6-2
6.2.4 Provide Instructions to UPP . 6-3

6.3 Sample Subscription File for Installing a Product 6-3
6.4 The UPP Command . 6-4
6.5 Automating UPP via cron . 6-4

Chapter 7: Installing Products using FTP . 7-1
7.1 UPS Product Components to Download . 7-1
7.2 Installing Products from fnkits.fnal.gov . 7-2

7.2.1 Download the Files from fnkits . 7-2
7.2.2 Unwind the Files into your Products Area 7-3
7.2.3 Declare the Product to your Database . 7-4

7.3 Installing Products from Other Product Distribution Nodes 7-4
7.3.1 Locate the Product Files on the Server . 7-4
7.3.2 Download the Files from the Server . 7-5
7.3.3 Unwind the Files into your Products Area 7-5
7.3.4 Declare the Product to your Database . 7-5

Chapter 8: Product Installation: Special Cases . 8-1
8.1 Installing Products that Require Special Privileges 8-1
8.2 Installing Locally Using UPD from AFS-Space 8-2
8.3 Installing Products into AFS Space . 8-3

8.3.1 Overview . 8-3
8.3.2 Request a Product Volume . 8-4
8.3.3 Install your Product . 8-4
8.3.4 Post-Installation Steps . 8-5

TOC-10 Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014C)

Chapter 9: Troubleshooting UPS Product Installations 9-1

Part III: System Administrator’s Guide

Chapter 10: Maintaining a UPS Database . 10-1
10.1 Declare an Instance . 10-1

10.1.1 The ups declare Command . 10-2
10.1.2 Examples . 10-2

10.2 Declare a Chain . 10-4
10.2.1 The ups declare Command with Chain Specification 10-4
10.2.2 Examples . 10-5

10.3 Remove a Chain . 10-6
10.4 Change a Chain . 10-7
10.5 Undeclare and Remove an Instance . 10-7

10.5.1 Using ups undeclare to Remove a Product 10-8
10.5.2 Undoing Configuration Steps . 10-9
10.5.3 Using UPP to Remove a Product . 10-10

10.6 Verify Integrity of an Instance . 10-10
10.7 Modify Information in a Database File . 10-11
10.8 Determine If a Product Needs to be Updated 10-13

10.8.1 Using UPP . 10-13
10.8.2 Using UPD . 10-13

10.9 Update a Table File or ups Directory . 10-14
10.10 Retrieve an Individual File . 10-15
10.11 Check Product Accessibility . 10-16
10.12 Troubleshooting . 10-17

Chapter 11: UPS and UPD Pre-install Issues and General Administration

 . 11-1
11.1 Choosing Installer Accounts . 11-1

11.1.1 Single Installer Account . 11-1
11.1.2 Multiple Installer Accounts . 11-1
11.1.3 Separate Installer Accounts for Different Product Categories . . 11-2

11.2 Setting gids for Multiple Installer Accounts 11-2
11.3 File Ownership, Permissions and Access Restrictions 11-3

11.3.1 Product Files . 11-3
11.3.2 Database Files . 11-3

11.4 Product File Location and Organization . 11-4
11.4.1 Considerations . 11-4
11.4.2 Single Flavor or Single Node Systems . 11-4
11.4.3 Multi-Flavor and/or Multi-Node Systems 11-5

11.5 Database File Location and Organization . 11-6
11.5.1 Choosing Single or Multiple UPS Databases 11-6
11.5.2 UPS Database File Pointers . 11-6

Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014C) TOC-11

11.6 Installing UPS for Use Without a Database . 11-7
11.7 CYGWIN (Windows NT) Issues . 11-7

11.7.1 Using Correct Perl Version . 11-7
11.7.2 Mounting the CYGWIN bin Directory 11-8
11.7.3 Setting Environment Variables . 11-8

11.8 General Administration Issues . 11-8
11.8.1 Upgrading an Older System . 11-8
11.8.2 Adding a New Database and/or Products Area 11-9
11.8.3 Collecting Statistics on Product Usage 11-10

Chapter 12: Providing Access to AFS Products . 12-1
12.1 Overview . 12-1
12.2 Configuring a Local Database to Work With AFS 12-2

12.2.1 Steps to Create and Configure the Database 12-2
12.2.2 Post-Configuration: Reinitialize FUE Environment 12-4
12.2.3 A Note about Product Installation for this Configuration 12-4

12.3 Installing a Local Copy of CoreFUE . 12-4
12.4 Additional Steps for Unfamiliar Naming Conventions 12-5
12.5 Updating /usr/local/bin to Access AFS Products 12-6

Chapter 13: Bootstrapping CoreFUE . 13-1
13.1 Downloading the Bootstrap and Configuration Files 13-1

13.1.1 Predefined Configurations for UNIX . 13-1
13.1.2 User-defined Configuration for UNIX . 13-2
13.1.3 Predefined Configurations for NT . 13-2

13.2 Customizing a Bootstrap Configuration . 13-3
13.2.1 Bootstrap Configuration File Statement Definitions 13-3
13.2.2 Sample Customization . 13-4

13.3 Running the Bootstrap Procedure . 13-5
13.3.1 UNIX . 13-5
13.3.2 NT . 13-5

Chapter 14: Automatic UPS Product Startup and Shutdown 14-1
14.1 Configuring Your Machine to Allow Automatic Startup/Shutdown . 14-1
14.2 Installing a UPS Product to Start and/or Stop Automatically 14-2

14.2.1 Determine if Auto Start/Stop Feature is Enabled 14-2
14.2.2 Determine if Product is Appropriate for Autostart 14-3
14.2.3 Edit Control File(s) . 14-3
14.2.4 Summary . 14-4

14.3 Disabling UPS Automatic Start/Stop of Processes 14-4
14.4 A Summary of the UPS Automatic Start-up Process 14-5

TOC-12 Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014C)

Part IV: Product Developer’s Guide

(Part IV is listed is listed in the front section of the table of contents.)

Chapter 15: UPS Product Development: General Considerations 15-1

Chapter 16: Building UPS Products . 16-1

Chapter 17: Making Products Available For Distribution 17-1

Chapter 18: Using template_product to Build and Distribute UPS Products

 . 18-1

Chapter 19: Checklist for Building and Distributing Products 19-1

Part V: Distribution Node Maintainer’s Guide

Chapter 20: Product Distribution Server Configuration 20-1
20.1 How A Server Responds to a UPD Client Command 20-1

20.1.1 The Process for upd addproduct . 20-2
20.1.2 The Process for upd install . 20-2

20.2 Accounts Required for Distribution Server . 20-3
20.2.1 The updadmin Account . 20-3
20.2.2 The ftp Account . 20-3
20.2.3 The wwwadm Account . 20-4

20.3 Web Server Configuration . 20-5
20.3.1 The cgi Scripts Used to Access Distribution Database 20-5
20.3.2 Restricting Access to Distribution Database 20-6
20.3.3 Prerequisites for Modifying the Distribution Database 20-7
20.3.4 Permissions on Files Created in the Distribution Database 20-7

20.4 FTP Server Configuration . 20-7
20.5 UPD Configuration Items . 20-9

20.5.1 Archive File Keywords and ${SUFFIX} 20-9
20.5.2 Pre- and Postdeclare ACTIONs . 20-10

20.6 Administrative Tasks and Utilities . 20-10
20.6.1 Reporting FTP and Web Server Activity Using Ftpweblog . . 20-10
20.6.2 Restricting Access for Uploads to Distribution Database 20-11
20.6.3 Restricting Access for Downloads from Distribution Database 20-11
20.6.4 Restricting Distribution of Particular Products 20-11
20.6.5 Flagging Special Category Products Using Optionlist 20-12
20.6.6 Searching FTP Server Logfiles Using Searchlog 20-13

20.7 Product Distribution via CD-ROM . 20-14

Chapter 21: Configuration of the fnkits Product Distribution Node 21-1
21.1 UPS Configuration for KITS Database . 21-1
21.2 UPS Configuration for local Product Database 21-1

Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014C) TOC-13

21.3 UPD Configuration . 21-2
21.3.1 updconfig File Organization . 21-2
21.3.2 The Recognized Product Categories . 21-3
21.3.3 Matching Product Categories to updconfig Stanzas 21-3
21.3.4 Location and File Name Definitions . 21-4
21.3.5 Pre- and Postdeclare ACTIONS . 21-4

21.4 fnkits Server Maintenance . 21-6
21.4.1 User Accounts and Group Ids . 21-6
21.4.2 Database and Configuration File Locations 21-6
21.4.3 Web Server and FTP Log File Information 21-7

Part VI: UPS and UPD Command Reference

Chapter 22: UPS Command Reference . 22-1
22.1 setup . 22-3

22.1.1 Command Syntax . 22-3
22.1.2 Commonly Used Options . 22-3
22.1.3 All Valid Options . 22-3
22.1.4 More Detailed Description . 22-5
22.1.5 setup Examples . 22-6

22.2 unsetup . 22-9
22.2.1 Command Syntax . 22-9
22.2.2 All Valid Options . 22-9
22.2.3 More Detailed Description . 22-11
22.2.4 unsetup Examples . 22-12

22.3 ups configure . 22-13
22.3.1 Command Syntax . 22-13
22.3.2 Commonly Used Options . 22-13
22.3.3 All Valid Options . 22-13
22.3.4 More Detailed Description . 22-15
22.3.5 ups configure Examples . 22-15

22.4 ups copy . 22-17
22.4.1 Command Syntax . 22-17
22.4.2 Commonly Used Options . 22-17
22.4.3 All Valid Options . 22-17
22.4.4 Options Valid with -G . 22-19
22.4.5 More Detailed Description . 22-19
22.4.6 ups copy Examples . 22-20

22.5 ups declare . 22-21
22.5.1 Command Syntax . 22-21
22.5.2 Commonly Used Options . 22-21
22.5.3 All Valid Options . 22-22
22.5.4 More Detailed Description . 22-24
22.5.5 ups declare Examples . 22-26

TOC-14 Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014C)

22.6 ups depend . 22-27
22.6.1 Command Syntax . 22-27
22.6.2 Commonly Used Options . 22-27
22.6.3 All Valid Options . 22-27
22.6.4 ups depend Examples . 22-29

22.7 ups exist . 22-31
22.7.1 Command Syntax . 22-31
22.7.2 Commonly Used Options . 22-31
22.7.3 All Valid Options . 22-31
22.7.4 More Detailed Description . 22-33
22.7.5 ups exist Examples . 22-33

22.8 ups flavor . 22-35
22.8.1 Command Syntax . 22-35
22.8.2 Commonly Used Options . 22-35
22.8.3 All Valid Options . 22-35
22.8.4 More Detailed Description . 22-36
22.8.5 ups flavor Examples . 22-37

22.9 ups get . 22-39
22.9.1 Command Syntax . 22-39
22.9.2 All valid options . 22-39
22.9.3 ups get Example . 22-40

22.10 ups help . 22-41
22.10.1 ups help Example . 22-41

22.11 ups list . 22-43
22.11.1 Command Syntax . 22-43
22.11.2 Commonly Used Options . 22-43
22.11.3 All Valid Options . 22-43
22.11.4 More Detailed Description . 22-45
22.11.5 ups list Examples . 22-49

22.12 ups modify . 22-55
22.12.1 Command Syntax . 22-55
22.12.2 Commonly Used Options . 22-55
22.12.3 All Valid Options . 22-55
22.12.4 More Detailed Description . 22-56
22.12.5 ups modify Example . 22-57

22.13 ups start . 22-59
22.13.1 Command Syntax . 22-59
22.13.2 Commonly Used Options . 22-59
22.13.3 All Valid Options . 22-59
22.13.4 More Detailed Description . 22-61
22.13.5 ups start Examples . 22-61

22.14 ups stop . 22-63
22.14.1 Command Syntax . 22-63
22.14.2 Commonly Used Options . 22-63
22.14.3 All Valid Options . 22-63

Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014C) TOC-15

22.14.4 More Detailed Description . 22-65
22.14.5 ups stop Examples . 22-65

22.15 ups tailor . 22-67
22.15.1 Command Syntax . 22-67
22.15.2 Commonly Used Options . 22-67
22.15.3 All Valid Options . 22-67
22.15.4 More Detailed Description . 22-69
22.15.5 ups tailor Example . 22-69

22.16 ups touch . 22-71
22.16.1 Command Syntax . 22-71
22.16.2 Commonly Used Options . 22-71
22.16.3 All Valid Options . 22-71
22.16.4 ups touch Example . 22-72

22.17 ups unconfigure . 22-73
22.17.1 Command Syntax . 22-73
22.17.2 Commonly Used Options . 22-73
22.17.3 All Valid Options . 22-73
22.17.4 More Detailed Description . 22-75
22.17.5 ups unconfigure Example . 22-75

22.18 ups undeclare . 22-77
22.18.1 Command Syntax . 22-77
22.18.2 Commonly Used Options . 22-77
22.18.3 All Valid Options . 22-78
22.18.4 More Detailed Description . 22-79
22.18.5 ups undeclare Examples . 22-80

22.19 ups verify . 22-81
22.19.1 Command Syntax . 22-81
22.19.2 Commonly Used Options . 22-81
22.19.3 All Valid Options . 22-81
22.19.4 ups verify Example . 22-83

Chapter 23: UPD/UPP Command Reference . 23-1
23.1 upd addproduct . 23-3

23.1.1 Command Syntax . 23-3
23.1.2 Commonly Used Options . 23-4
23.1.3 All Valid Options . 23-4
23.1.4 More Detailed Description . 23-7
23.1.5 Adding Products to fnkits.fnal.gov . 23-8
23.1.6 upd addproduct Examples . 23-9

23.2 upd cloneproduct . 23-11
23.2.1 Command Syntax . 23-11
23.2.2 All Valid Options . 23-11
23.2.3 Options Valid with -G . 23-12
23.2.4 upd cloneproduct Example . 23-12

23.3 upd delproduct . 23-13
23.3.1 Command Syntax . 23-13
23.3.2 Commonly Used Options . 23-13

TOC-16 Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014C)

23.3.3 All Valid Options . 23-13
23.3.4 upd delproduct Example . 23-14

23.4 upd depend . 23-15
23.4.1 Command Syntax . 23-15
23.4.2 Options . 23-15
23.4.3 upd depend Examples . 23-15

23.5 upd exist . 23-17
23.5.1 Command Syntax . 23-17
23.5.2 Options . 23-17
23.5.3 upd exist Examples . 23-17

23.6 upd fetch . 23-19
23.6.1 Command Syntax . 23-19
23.6.2 Commonly Used Options . 23-19
23.6.3 All Valid Options . 23-19
23.6.4 upd fetch Examples . 23-21

23.7 upd get . 23-23
23.7.1 Command Syntax . 23-23
23.7.2 Options . 23-23

23.8 upd install . 23-25
23.8.1 Command Syntax . 23-25
23.8.2 Commonly Used Options . 23-25
23.8.3 All Valid Options . 23-25
23.8.4 Options Valid with -G . 23-28
23.8.5 More Detailed Description . 23-28
23.8.6 upd install Examples . 23-29

23.9 upd list . 23-31
23.9.1 Command Syntax . 23-31
23.9.2 Options . 23-31
23.9.3 upd list Examples . 23-31

23.10 upd modproduct . 23-33
23.10.1 Command Syntax . 23-33
23.10.2 Commonly Used Options . 23-33
23.10.3 All Valid Options . 23-34
23.10.4 More Detailed Description . 23-35
23.10.5 upd modproduct Examples . 23-36

23.11 upd repproduct . 23-39
23.11.1 Command Syntax . 23-39
23.11.2 Options . 23-40
23.11.3 upd repproduct Examples . 23-40

23.12 upd update . 23-41
23.12.1 Command Syntax . 23-41
23.12.2 Commonly Used Options . 23-41
23.12.3 All Valid Options . 23-41
23.12.4 upd update Examples . 23-43

Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014C) TOC-17

23.13 upd verify . 23-45
23.13.1 Command Syntax . 23-45
23.13.2 Options . 23-45

23.14 upp . 23-47
23.14.1 Command Syntax . 23-47
23.14.2 All Valid Options . 23-47
23.14.3 upp Examples . 23-47

Chapter 24: Generic Command Option Descriptions 24-1
24.1 Alphabetical Option Listing . 24-1
24.2 More Information on Selected Options . 24-7

24.2.1 -e . 24-7
24.2.2 -H . 24-7
24.2.3 -K . 24-7
24.2.4 -q . 24-8
24.2.5 -V . 24-9

Chapter 25: UPS/UPD Command Usage . 25-1
25.1 Syntax . 25-1

25.1.1 Order of Command Line Elements . 25-1
25.1.2 Specifying Version/Chain . 25-1
25.1.3 Grouping Option Flags . 25-2
25.1.4 Specifying Arguments to Options . 25-2
25.1.5 Embedded Spaces in Option Arguments 25-2
25.1.6 Invalid Option Arguments . 25-3
25.1.7 Specifying Multiple Products in a Single Command 25-3
25.1.8 Multiple Occurrences of Same Option Flag 25-3
25.1.9 Use of Wildcards . 25-4

25.2 Options . 25-4

Chapter 26: Product Instance Matching in UPS/UPD Commands 26-1
26.1 Database Selection Algorithm . 26-1

26.1.1 UPS . 26-1
26.1.2 UPD . 26-2

26.2 Instance Matching within Selected Database 26-3
26.2.1 Where Does Instance Matching Take Place? 26-3
26.2.2 Flavor Selection . 26-3
26.2.3 Qualifiers: Use in Instance Matching . 26-4
26.2.4 Flavor and Qualifier Matching Algorithm 26-4

TOC-18 Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014C)

Part VII: Administrator’s Reference

Chapter 27: Information Storage Format in Database and Configuration Files

 27-1
27.1 Overview of File Types . 27-1
27.2 Keywords: Information Storage Format . 27-2

27.2.1 What is a Keyword? . 27-2
27.2.2 Keyword Syntax . 27-2
27.2.3 User-Defined Keywords . 27-2
27.2.4 How UPS/UPD Sets Keyword Values . 27-3

27.3 Flexibility of File Syntax . 27-3
27.4 List of Supported Keywords . 27-3
27.5 Syntax for Assigning Keyword Values . 27-8
27.6 Usage Notes on Particular Keywords . 27-9

27.6.1 COMPILE_DIR, COMPILE_FILE and @COMPILE_FILE . . 27-9
27.6.2 PROD_DIR_PREFIX, PROD_DIR and @PROD_DIR 27-9
27.6.3 STATISTICS . 27-9
27.6.4 TABLE_FILE and @TABLE_FILE . 27-10
27.6.5 UPS_DIR and @UPS_DIR . 27-11
27.6.6 _UPD_OVERLAY . 27-11

Chapter 28: Version Files . 28-1
28.1 About Version Files . 28-1
28.2 Keywords used in Version Files . 28-2
28.3 Version File Examples . 28-3

28.3.1 Sample Version File for exmh v1_6_6 28-3
28.3.2 Sample version file for foo v2_0 . 28-4

28.4 Determination of ups Directory and Table File Locations 28-5

Chapter 29: Chain Files . 29-1
29.1 About Chain Files . 29-1
29.2 Keywords Used in Chain Files . 29-2
29.3 Chain File Examples . 29-3

29.3.1 Sample chain file for exmh v1_6_6 . 29-3
29.3.2 Sample chain file for foo v2_0 . 29-3

Chapter 30: The UPS Configuration File . 30-1
30.1 dbconfig File Organization . 30-1
30.2 Keywords Used in dbconfig . 30-1
30.3 Sample dbconfig File . 30-2

Chapter 31: The UPD Configuration File . 31-1
31.1 updconfig File Organization . 31-1
31.2 Product Instance Identification and Matching 31-2

Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014C) TOC-19

31.3 Defining Locations for Product Files . 31-3
31.3.1 Required Locations . 31-3
31.3.2 Read-Only Variables Usable in Location Definitions 31-4
31.3.3 Sample Location Definitions . 31-5

31.4 Pre- and Postdeclare Actions . 31-5
31.4.1 ACTION Keyword Values . 31-6
31.4.2 The execute Function . 31-6

31.5 Examples . 31-7
31.5.1 Generic Template updconfig File . 31-7
31.5.2 Distribution from the fnkits Node Only 31-8
31.5.3 Customized Treatment of ups Directory and Table Files 31-8
31.5.4 Implementing Multiple Configurations 31-9
31.5.5 Sample Configuration for AFS Space Using ACTIONS 31-10
31.5.6 Distribution Node Configuration . 31-10

Chapter 32: The UPP Subscription File . 32-1
32.1 UPP Subscription File Header . 32-1
32.2 Stanzas . 32-2

32.2.1 Product Instance Identification . 32-2
32.2.2 Conditions and Instructions . 32-2

32.3 Examples . 32-3
32.3.1 Sample UPP Subscription File . 32-3
32.3.2 A Longer Annotated Example . 32-4

Part VIII: Developer’s Reference

(Part VIII is listed is listed in the front section of the table of contents.)

Chapter 33: Actions and ACTION Keyword Values 33-1

Chapter 34: Functions used in Actions . 34-1

Chapter 35: Table Files . 35-1

Chapter 36: Scripts You May Need to Provide with a Product 36-1

Chapter 37: Use of Compile Scripts in Table Files 37-1

Chapter 38: Creating and Formatting Man Pages 38-1

Glossary . GLO-1

Index . IDX-1

TOC-20 Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014C)

About this Manual INT-1

About this Manual

This chapter provides an introduction to the Complete Guide and Reference Manual for UPS,
UPD and UPP v4. In particular you will find:

• the overall structure, the purpose and the intended audience of the manual

• what parts of the manual you need

• where to obtain this manual and where to look for updates

• the typeface conventions and symbols used throughout the document

• an invitation to readers to send us comments

This manual is published in three submanuals: GU0014A, GU0014B, and GU0014C. The
structure of the document and its division into these sections is discussed in the following
sections.

1. Document Structure, Purpose and Intended Audiences

The UPS and UPD v4 Reference Manual is intended for several different user groups as listed
on the next page. To best accommodate the different types of users, the manual is divided into
five user guides (Parts I-V):

• Part I Overview and End User’s Guide

• Part II Product Installer’s Guide

• Part III System Administrator’s Guide

• Part IV Product Developer’s Guide

• Part V Distribution Node Maintainer’s Guide

 and three reference manuals (Parts VI-VIII)

• Part VI UPS and UPD Command Reference

• Part VII Administrator’s Reference

• Part VIII Developer’s Reference

The user guides explain and illustrate the UPS/UPD/UPP tasks associated with each user
group. The reference guides provide detailed information on commands, concepts, file
structure/contents, and so on. On the following page is a guide to which parts of the manual
you are likely to need, according to your job functions. Notice that we recommend Parts I and
VI for all users:

INT-2 About this Manual

Parts User Functions

A: For All Users

Part I Overview and End User’s Guide End Users:
List product information in a UPS database on
a user system;
Access installed software products
Access FermiToolsa software products
(Other user groups’ functions described later
in table)

a. Fermilab-written software products that are made publicly available.

Part VI UPS and UPD Command Reference

B: For Product Installers, UPS Database Administrators, System Administrators of User
Machines, Distribution Node Maintainers

Part II Product Installer’s Guide Product Installers:
Install software products from a UPS product
distribution node into a UPS database on a
user system;
Install products into the AFS-space UPS data-
base

Part III System Administrator’s Guide
and
Part VII Administrator’s Reference

System Administrators, UPS Database Admin-
istrators:
Maintain UPS products in a UPS database;
Install UPS/UPD/UPP on a user system;
Configure UPS on a user system;
Configure UPD on a user system;
Configure UPP on a user system;
Configure an installed product to start/stop
automatically at boottime/shutdown

Part V Distribution Node Maintainer’s Guide Distribution Node Maintainers:
Install UPS/UPD on a distribution system;
Configure UPS and UPD on a distribution
system;
Configure Web and anonymous FTP servers
on a distribution system
Maintain UPS database on a distribution sys-
tem

C: Product Developers

Part IV Product Developer’s Guide Product Developers and Maintainers:
Develop and maintain software products that
are intended to be distributed in accordance
with UPS standards;
Adapt pre-existing or third-party software to
conform to UPS standards;
Distribute products

Part VIII Developer’s Reference

About this Manual INT-3

The table above lists rather generally the topics that the manual covers. Note that it is not the
purpose of this document to provide information on:

• general UNIX system administration

• general UNIX or Fermilab information (see instead UNIX at Fermilab, GU0001)

• the use of any particular software product other than UPS/UPD/UPP

2. Availability

Copies of the UPS and UPD v4 Reference Manual (GU0014A, B, and C), can be obtained
from the following sources:

Web
http://www.fnal.gov/docs/products/ups/Referen
ceManual/

This can be accessed under Documentation on the Computing
Division home page. Search using any of the following keywords:
afs, develop(ment), distribute(tion), fermitools, GU0014,
install(ation), kits, maintain(tenance), man page, product, system
administration, unix, upd, upp, ups

Paper Copies Wilson Hall, 8th floor, NE (just across from what used to be the
Computing Division library)

3. Updates

Pending subsequent releases of this manual, updates will be maintained on the Web with the
on-line version of the manual. To get there from the Computing Division home page, select
Documentation, request GU0014 and follow the pointers (see “Web” under section 2.
Availability).

4. Conventions

The following notational conventions are used in this document:

bold Used for product names (e.g., UPS).

italic Used to emphasize a word or concept in the text. Also
used to indicate logon ids and node names.

typewriter Used for filenames, pathnames, contents of files, output of
commands.

CDF and D0 collaborators: Also see A UNIX Based Software Management System
(GU0013) at
http://www-cdf.fnal.gov/offline/code_management/run2_cmgt/run
2_cmgt.html to find information describing how UPS and UPD have been implemented
in your experiments’ code management systems.

INT-4 About this Manual

typewriter-bold Used to indicate commands and prompts.

[...] In commands, square brackets indicate optional command
arguments and options.

| When shown in a command example (e.g., x|y|z),
separates a series of options from which one may or must
be chosen (depends if enclosed in square brackets). In
UNIX commands, used to pipe output of preceding
command to the following one.

’ ... ’ Single vertical quotes indicate apostrophes in commands.

" ... " Double vertical quotes indicate double quotes in
commands

... In a command, means that a repetition of the preceding
parameter or argument is allowed.

% Prompt for C shell family commands (% is also used
throughout this document when a command works for
both shell families).

$ Prompt for Bourne shell family commands; also standard
UNIX prefix for environment variables (e.g., $VAR means
“the value to which VAR is set”).

\ UNIX standard quoting character; used in commands
throughout the manual to indicate that the command
continues to the next line

<...> In commands, variables, pathnames and filenames, angle
brackets indicate strings for which reader must make a
context-appropriate substitution. For example,
$<PRODUCT>_DIR becomes $EMACS_DIR for the
product emacs.

{ } In local read-only variables, e.g., ${UPS_PROD_DIR},
string should be used as shown with the {}.

All command examples are followed by an implicit carriage return key.

Some of the files discussed in this document are shell family-specific, and thus come in pairs.
Their filenames carry the extensions .sh and .csh. We often refer to a pair of these files
as filename.[c]sh.

The following symbols are used throughout this document to draw your attention to specific
items in the text:

A “bomb”; this refers to something important you need to know in order to avoid a pitfall.

This symbol is intended to draw your attention to a useful hint.

About this Manual INT-5

5. Your Comments are Welcome!

The UPS and UPD v4 Reference Manual may contain some errors, however we endeavor to
minimize the error count! We encourage all the readers of this document to report back to us:

• errors or inconsistencies that we have overlooked

• any parts of the manual that are confusing or unhelpful -- please offer constructive
suggestions!

• other topics to include (keeping in mind the purpose of the manual)

• tricks, hints or ideas that other users might find helpful

Send your comments via email to cdlibrary@fnal.gov.

INT-6 About this Manual

Product Developer’s Guide IV-1

Part IV Product Developer’s Guide

Chapter 15: UPS Product Development: General Considerations

This chapter discusses the UPS product development methodology and tools
that can be used in product development. It also provides recommendations
for organizing your local product development area and the individual
product root directories you will need to create.

Chapter 16: Building UPS Products

In this chapter we describe the steps you need to take in order to prepare a
product for inclusion into the UPS framework and then to prepare it for
distribution. We go through the steps for a simple case, then discuss the
additional steps that may be required in more complex situations. Some
sample auxiliary files are provided at the end.

Chapter 17: Making Products Available For Distribution

This chapter describes the processes of adding, updating, deleting and
“cloning” product instances or components on a product distribution system.
Information on creating tar files, using Fermilab CVS repositories and
announcing products is also provided.

Chapter 18: Using template_product to Build and Distribute UPS
Products

In this chapter we describe the template_product product, and show how to
use it to build and distribute a product.

Chapter 19: Checklist for Building and Distributing Products

In this chapter we summarize the steps for preparing to build a product,
building it and distributing it. We include information about making the
appropriate announcements when a new or upgraded product is available.

IV-2 Product Developer’s Guide

UPS Product Development: General Considerations 15-1

Chapter 15: UPS Product Development:

General Considerations

This chapter discusses the UPS product development methodology and tools that can be used
in product development. It also provides recommendations for organizing your local product
development area and the individual product root directories you will need to create.

15.1 Product Development Considerations
and Recommendations

In this section we will provide some guidelines for product development as it affects the
product’s inclusion in the UPS framework.

Simple scripts which run on any architecture are naturally quite straightforward to implement
under UPS. Products which are obtained from the outside world (third party) as executable
images with no source code are also generally straightforward. The ones that get complicated
are the products which must be compiled and/or otherwise built for each and every supported
architecture.

15.1.1 All Products (Locally Developed and Third Party)

Shell Independence

The product should run the same way under both shell families, sh and csh. If the product
requires any actions to take place before it will run (e.g., its bin directory added to your
$PATH, some environment variables set), provide a table file containing these actions. The
UPS environment is described in Chapter 1: Overview of UPS, UPD and UPP v4 and table
files in Chapter 35: Table Files. The functions supported in table files are designed to work in
a shell-independent manner, in general.

Flavor Declaration in UPS

On your development system, we recommend that you declare your products according to the
fully specified flavor of the machine on which you build them (or on which they were built).
We consider this to be very important, especially if your target systems contain or will ever
contain mixed OS releases (e.g., IRIX+6.2 and IRIX+6.5). This will help to avoid problems
when a new OS release doesn’t run images built on an older one, or vice-versa. You don’t
want to have to go back and comb out which OS release a particular product instance was built
for, you want to be able to tell immediately from looking at the database. Installers and users
also need this information to facilitate their database maintenance.

15-2 UPS Product Development: General Considerations

Products which have no flavor-dependence at all (shell scripts, for instance), should be
declared as NULL to the database (use the “zero” option, -0; see Chapter 24: Generic
Command Option Descriptions). For other products, include the entire flavor string of the
build platform in the declaration, or the major portion of that string. For example, if you build
on an OSF1 machine running V3.2, declare your products with the flavor OSF1+V3.2 or
OSF1+V3 rather than just OSF1 (e.g., use the flavor level corresponding to the options -3 or
-2 rather than -1)

Policy Regarding Use of /usr/local/bin

Outside Fermilab, in the UNIX world at large, products typically get put in
/usr/local/bin. With this in the user’s $PATH, all the products are accessible. This
practice is inconsistent with the goal of UPS to provide concurrent versions of products.
Therefore only products specially approved by the FUE working group may write into
/usr/local/bin. No other products should write to this area, or to any other area
within /usr/local.

15.1.2 Products that You Develop

If you’re writing your own product for implementation within UPS, you have the luxury (and,
we might add, the responsibility) of creating it such that it exploits the important features of
UPS, thus making it easy for the user to install and run, and easy for you or another developer
to maintain in the future. We urge you to follow the guidelines we present here.

Self-Containment and Location Determination

First, design the product such that it is self-contained. It should identify its location and the
location of any required files at run time (as opposed to compile time). You as the product
developer have total control over the structure and contents of the product root directory, but
no control at all over where the product root directory will reside on a target system.

If you write the product such that it calculates its location at compile time, you’ll be putting the
hard-coded path to your development environment into the image -- most likely not the correct
path on the user machine.

You can choose to define the environment variable $<PRODUCT>_DIR, which points to the
product root directory. In UPS v4, this variable is no longer always necessary since much of
its usefulness is taken over by the local read-only variable ${UPS_PROD_DIR}, described in
section 34.6 Local Read-Only Variables Available to Functions. However, users will still find
$<PRODUCT>_DIR to be useful since they will have access to it as long as the product is
setup.

As an example of the use of ${UPS_PROD_DIR}, take myproduct written in perl which
requires the file lib/myprod-headers.pl. You should refer to this file in the perl code
as $ENV::{MYPROD_PERL_LIB}/myprod-headers.pl rather than by its full path,
e.g., /path/to/lib/myprod-headers.pl. In the table file, set
MYPROD_PERL_LIB to ${UPS_PROD_DIR}/lib. You should make no assumptions
about where users will put the file.

As stated above, products should not use or copy files into the areas under /usr/local.

UPS Product Development: General Considerations 15-3

Reproducible Build Procedure

All products should be built using a build script in order to ensure that the build procedure is
reproducible. If your product is at all complex, we recommend that you use Makefiles for this
purpose. We have created a template product for creating UPS products, described in Chapter
18: Using template_product to Build and Distribute UPS Products. It includes
Fermi-standard Makefiles, and automates much of the process. The general UNIX make
utility and the associated Makefiles are beyond the scope of this document, but the subject is
introduced in UNIX at Fermilab, and treated in many standard UNIX texts.

System Independence

The various flavors of UNIX have many differences. You will generally have to release
separate instances of your (compiled) products for the different flavors. However, the more
you are able to insulate your product from flavor/release dependencies, the easier your product
will be to maintain, and the less rigid it will appear to installers and users.

15.1.3 Third-Party Products Requiring a Hard-Coded
Path

If you’re installing a third-party product, downloaded from the Web or elsewhere, you may not
have the opportunity to code it such that it identifies its location at run time based on
${UPS_PROD_DIR} or the $<PRODUCT>_DIR environment variable. Whereas many
products never need to know their location (they only need to be in your $PATH, for example),
many other products do need to know their location in order to locate auxiliary commands,
libraries, utilities, and so on.

Techniques for Implementing these Products

For those that do, the technical note TN0086 Use of "/usr/local/products" now deprecated,
on-line at http://www.fnal.gov/docs/TN/TN0086/tn0086.html, describes
recommended techniques for implementing the products. Please refer to it for information.
The three approaches it describes are, briefly:

• For a product that is already setup and which contains a script that requires an interpreter,
start the script with #!/usr/bin/env <interpreter> (e.g.,
#!/usr/bin/env perl). The env program will run the first copy of the interpreter
it finds on your command search path, and your script is then executable.

• Create a “wrapper” shell script which sets up the UPS environment, sets up your
product, and then invokes the appropriate commands. (An example is www v2_6a.)

• Sometimes getting a product setup before one of its scripts is invoked is not practical,
and wrapper scripts may be unacceptably slow to start up. In cases where the product is
considered important enough by the FUE working group that it must work properly even
in the absence of UPS, a “trampoline” executable is provided, usually in
usr/local/bin. The wrapper script should contain
#!/path/to/trampoline.

 When the product is configured, its CONFIGURE action inserts the product path into the
trampoline executable. The wrapper script is then executable. Note that these products
generally need to be declared as root.

15-4 UPS Product Development: General Considerations

Examples of Products Requiring Hard-coded Paths

Here are examples of situations in which hard-coded paths are unavoidable:

• Pre-built products which have hard-coded paths.

• Products that you can rebuild, but which were not coded with the idea of calculating
where the files sit at run time. You need to tell them where to look for files at compile
time, and this leads to hard-coded paths in the images.1

• Commands that are not executed in the context of a shell, but rather as a program. An
example is the mh utility slocal (for automatically sorting and foldering your incoming
mh mail). This command is called via a command line in one of the configuration files
(.forward).

 You can’t use the construct "| ${MH_DIR}/lib/slocal -user joe" to
identify slocal because the program running this command will not expand the
${MH_DIR} environment variable. You also don’t want to spell out the whole actual
path because you’d have to edit the .forward file every time a new version of mh is
released.

• cgi scripts, rsh scripts and other situations in which you can’t be sure that the product
will necessarily have been setup when it is called by another one, and it needs to work
anyway. We recommend that you consult with the UAS group (uas-group@fnal.gov) to
determine the best course of action. Frequently you can create product configuration
scripts that copy or link the product files into the correct location on the target node. In
some cases for cgi scripts, you can have your Web server setup the product and pass the
relevant environment variables.

In the past for UPS v3 we used the /usr/local/products convention. We include
this information for reference purposes only. This convention had serious drawbacks. The
old (now deprecated) procedure was standard only on fully FUE-compliant systems
(defined in the on-line document DR0009), and required that you:

• configure, build, and/or (re-)code the product so that the hard-coded path it uses is
/usr/local/products/{product}/{version} (e.g.,
/usr/local/products/tk/v4_2a).

• write a configure script which creates the directory
/usr/local/products/{product}, and creates in it the symbolic link
{version} back to the real product root directory (e.g.,
/usr/local/products/tk/v4_2a is a symbolic link to
/path/to/products/OSF1+V3/tk/v4_2a).

• write a current script that creates a symbolic link called current in the same
directory, pointing to the link for the instance which is declared as current (e.g.,
/usr/local/products/tk/current is a symbolic link to
/usr/local/products/tk/v4_2a).

1. Most vendors (freeware, shareware, and the few paid packages where you get the
source code and rebuild it) now make it possible to modify the Makefiles so that you can
decide where you want the output files, images, and so on, to go. Unfortunately, these are
still frequently hard-coded at compile time, not run time. Therefore, packages that you
build in this manner on your development system will not be right when installed on a user
system with a different product root directory path.

UPS Product Development: General Considerations 15-5

15.2 Tools for Developing and/or Packaging
Products

The tools that we introduce in this section can be used separately or together. They are all
available as UPS products in KITS. See the on-line documentation Integrating buildmanager,
cvs, template_product,and upd at
http://www.fnal.gov/docs/products/buildmanager/Integrating.html.

15.2.1 Buildmanager

The buildmanager application is a configurable tool which lets you build software on multiple
systems simultaneously, in an organized and consistent fashion. It allows you to set up
standardized build sequences and define actions to be performed automatically. It can stop if
things go wrong, and allows interaction with various build systems to correct problems. It is
available as a UPS product in KITS. Any system to which you can telnet and run commands
can be used as a build system with buildmanager. See the on-line documentation at
http://www.fnal.gov/docs/products/buildmanager/.

15.2.2 CVS

It is a common practice to maintain a product’s source code as well as its Makefile and UPS
management files in a CVS repository for development and maintenance. CVS allows each
developer to check out files into a private working directory and to modify them as necessary.
With CVS you can maintain all the different versions and flavors in a single work area, and
you can pull them out to the separate nodes as needed. Developers working with prebuilt
binaries (downloaded from the Web or purchased from a vendor) can use CVS for just the
Makefile and UPS management files (e.g., the local README and INSTALL files, the table
file, tests, documentation, and so on) so that they can be properly source-controlled.
Documentation for CVS can be found on-line at
http://www.fnal.gov/docs/products/cvs/.

It is useful to be able to use UPS to setup these checked-out areas. One way that this can be
accomplished is by declaring the checked-out area to either the main or a private UPS
database, but this is often cumbersome, as these checked-out areas are by nature fairly
transient.

A better solution is to exploit the UPS capability of setting up a product instance without
having it actually declared to any database. To do this, you simply need to supply the setup
command with all of the necessary information, shown here:

% setup <product> -r /your/checked/out/area -M <tableFileDir> \
-m <tableFile> -q <qualifierList> -f <flavor>

15-6 UPS Product Development: General Considerations

15.2.3 Template_product

To simplify and somewhat automate the process of building UPS products, we have designed
the product template_product. Once this product is installed on your system, it can be cloned
into a new product area and customized to the new product. template_product can be used to
build products of all types (shell script, pre-built binary, source code). We discuss this product
in detail in Chapter 18: Using template_product to Build and Distribute UPS Products.

15.3 Directory Structure for a UPS Product
Instance

The top level directory of a UPS product instance is called the product root directory, and in
general it should contain files and subdirectories in which almost everything related to the
product instance resides: the executables, the library files, the documentation, and so on. The
ups directory files (i.e., the UPS metadata) and the table file usually reside here, but are not
required to do so.

UPS is very lenient in the directory structure it allows. Nothing is required in all situations
beyond a product root directory. Normally product instances have a table file containing
actions that are run during operations like product installation and setup.

We recommend that you follow a few directory structure guidelines simply to conform to a
generally recognized format. This will make it easy for yourself and others to identify each
file and directory later on. The following is a relatively complete sample directory structure
underneath the product root directory. Most products won’t require all of these elements. On
the other hand, you may include other directories and/or files not listed here. Elements which
we strongly recommend that you provide (in addition to the executables) for every product
include a README file, man pages, a user guide, test scripts and example files.

README text file containing information such as origin of the product (by
whom, from where, etc.), support level, support group/person,
caveats and known bugs (may be contained in the ups directory)

bin directory containing the executable(s)

ups directory containing metadata files and other executable and data
files used during implementation and invocation; may also contain
INSTALL_NOTE (described below) file and the directories
toman, toInfo, tonews and tohtml. Often the table file
resides here. (This directory is no longer a required element of a
UPS product.)

Default location of the ups directory is directly underneath the
product root (for compatibility with UPS v3), but it may reside
anywhere.

ups/INSTALL_NOTE text file containing a detailed description of any installation actions
that are more easily performed directly by the installer rather than
by a script (beyond or instead of running configure and/or
tailor and/or current). This should not be a script. This file
is not usually needed. If provided, mention it in the README file
so that product installers know to run it.

UPS Product Development: General Considerations 15-7

lib directory containing libraries

src directory containing source code

include directory containing include files

doc directory containing a user guide and any other documentation as
appropriate; should include the source files (e.g., LaTeX, Word) as
well as the printable files (e.g., PostScript)

man directory containing unformatted man pages. The files get copied
into the location specified in
$PRODUCTS/.upsfiles/dbconfig (keyword
MAN_TARGET_DIR).

Default location (for compatibility with UPS v3):
ups/toman/man

catman directory containing formatted man pages. The files get copied into
the location specified in $PRODUCTS/.upsfiles/dbconfig
(keyword CATMAN_TARGET_DIR).

Default location (for compatibility with UPS v3):
ups/toman/catman

html directory containing the html version of the user guide and any
other documentation as appropriate (automatic copy of files to
standard area defined by HTML_TARGET_DIR not implemented
in UPS v4)

Default location (for compatibility with UPS v3): ups/tohtml

news directory containing news files to be posted to a newsgroup
(automatic copy of files to standard area defined by
NEWS_TARGET_DIR not implemented in UPS v4)

Default location (for compatibility with UPS v3): ups/tonews

Info directory containing any text files that are to be displayed as a login
announcement via the Info feature. The files get copied into the
location specified in $PRODUCTS/.upsfiles/dbconfig
(keyword INFO_TARGET_DIR). Info is generally used to
communicate to users about the Fermilab computing systems
events, (e.g., shutdowns), software upgrades and other
systems-related information.

Default location (for compatibility with UPS v3): ups/toInfo

test directory containing test scripts and any other test-related files

examples directory containing example files to help users learn how to use
the product

Product Documentation Storage

Each different type of product documentation (e.g., man pages, html files, PostScript files, and
so on) must reside in a separate subdirectory. The subdirectories usually reside under the
product root directory, but do not have to. In the product’s table file, you should use the

15-8 UPS Product Development: General Considerations

keywords XXX_SOURCE_DIR as listed in section 27.4 List of Supported Keywords (e.g.,
MAN_SOURCE_DIR, INFO_SOURCE_DIR) to identify the directory in which each form of
documentation is maintained. For example:

CATMAN_SOURCE_DIR = ${UPS_PROD_DIR}/catman

MAN_SOURCE_DIR = ${UPS_PROD_DIR}/man

INFO_SOURCE_DIR = ${UPS_PROD_DIR}/Info

UPS currently requires that all files in a directory specified by XXX_SOURCE_DIR be of the
corresponding file type; you cannot mix file types.

The ups/toman directory and its subdirectories man, catman and toInfo are used
as defaults in UPS v4 for backwards compatibility. This structure is not necessarily our
recommendation. If a product comes with man pages, Info files, html files and so on, we
recommend that you leave them where they are, and simply specify their locations in the table
file. If you are writing your own, you can put them in subdirectories directly under the product
root directory, which is generally the most convenient place.

In UPS v4, NEWS_SOURCE_DIR and HTML_SOURCE_DIR are not implemented.

Building UPS Products 16-1

Chapter 16: Building UPS Products

In this chapter we describe the steps you need to take in order to prepare a product for inclusion
into the UPS framework and then to prepare it for distribution. We go through the steps for a
simple case, then discuss the additional steps that may be required in more complex situations.
Some sample auxiliary files are provided at the end.

16.1 Basic Steps for Making a UPS Product

In this section we will go through the steps of making a simple, unflavored product compatible
with UPS. The steps we illustrate in this section are also valid for more complicated situations,
but additional steps are generally needed in those cases. These will be noted later in the
chapter. We’ll use the standard “Hello world” example, with a product hello, version v1_0, of
flavor NULL. The executable, which is a script in this case, consists of the following text:

This is a simple case. You don’t need any Makefiles or scripts on how to build this product,
because it doesn’t get built. It runs on all flavors of UNIX without modification, so you should
declare it with the flavor NULL. It would be nice to have the $HELLO_DIR/bin directory
added to your $PATH to use the product, and that’s what the setup action will do. The unsetup
action will remove $HELLO_DIR/bin from your $PATH. No configuration or tailoring is
needed, nor are any special actions when the product is declared current.

The steps you need to complete are:

1) Create a directory hierarchy for the product and its related files.

2) Create a README file.

3) Create a table file in the location you want it to reside (usually either in the
product-specific directory directly underneath your UPS development database or in
the ups directory, if your product has one).

4) Declare the product to your UPS development database with the development chain so
that it doesn’t interfere with other peoples’ work. Although the product itself doesn’t
exist yet, the declaration can be done and we recommend it at this stage for
convenience.

5) Create the product script in the bin directory (or copy it into there).

#!/bin/sh

echo "Hello world"

16-2 Building UPS Products

6) Create man pages (a user’s guide is recommended also).

7) Test the product.

16.1.1 Build the Directory Hierarchy

We will take the product root directory to be hello/v1_0. This product root directory can
sit anywhere in the file system. An appropriate, simple directory structure underneath the
product root directory is as follows:

bin contains the executable script hello

man contains the unformatted man page(s)

catman contains the formatted man page(s)

test contains the test script(s)

A README file should go directly under hello/v1_0. We’ll put the table file, called
hello.table, under the database. Remember that most products would have more
subdirectories and files than shown here, in particular a ups directory as well as html
and/or doc for the user’s guide.

16.1.2 Create the Table File

For our example, we’ll create the file hello.table and put it in the product subdirectory
of the development database. A simple table file for this product might look like:

FILE=TABLE

PRODUCT=hello

VERSION=v1_0

#

#---------------------

FLAVOR = ANY

QUALIFIERS = ""

ACTION=SETUP

 pathPrepend(PATH, ${UPS_PROD_DIR}/bin, :)

 setupEnv()

16.1.3 Declare the Product to your Development UPS
Database

Refer to section 10.1 Declare an Instance for instructions on declaring the product to your
UPS database, or see the reference section 22.5 ups declare. In particular, note two things:

1) For an unflavored script like this example, declare the flavor specifically as NULL
(using either the -f NULL or -0 option).

2) Declare it with the chain development for your pre-distribution testing (using the -d
option).

For example:

% ups declare -0dz /ups_dev_db -r /ups_dev_prod/hello/v1_0 -m\
hello.table hello v1_0

Building UPS Products 16-3

We recommend declaring at this stage for reasons of convenience and organization. It allows
you to run setup [-d] on the product to make the $<PRODUCT>_DIR environment
variable available.

16.1.4 Copy the Product Executable to the bin Directory

Create the script in the bin directory, or copy or move it to this location.

16.1.5 Provide Product man Pages

See Chapter 38: Creating and Formatting Man Pages for more complete instructions on
creating man pages.

Create the (unformatted) nroff source $HELLO_DIR/man/hello.1. It may look similar
to this:

Use this source to create the formatted man page using the commands1:

% cd $HELLO_DIR/man

% nroff -man hello.1 > ../catman/hello.1

Once it is formatted, it will look like this:

.TH HELLO 1 LOCAL

.SH NAME

hello - print "Hello world" on stdout

.SH SYNOPSIS

.B hello

.SH DESCRIPTION

.B hello

prints the string "Hello world" on standard output.

1. If nroff is not available, run setup groff to get the GNU version.

HELLO(1) HELLO(1)

NAME

hello - print "Hello world" on stdout

SYNOPSIS

hello

DESCRIPTION

hello prints the string "Hello world" on standard output.

16-4 Building UPS Products

16.1.6 Test the Product

Now you can setup and test your product. As an example, for our product we might run:

% setup hello v1_0

% hello

Hello world

% unsetup hello v1_0

% hello

sh: hello: command not found

In many cases, writing a good test script can be rather challenging. Include at least a basic test
to ensure that the product works properly. For our example, the test script just needs to run our
hello program and verify its output, e.g.,:

#!/bin/sh

hello | grep "Hello world" > /dev/null

This will exit with a successful exit code if hello prints Hello world, and fail otherwise.

16.2 Specifics for Different Categories of
Products

This section discusses all the steps you need for turning virtually any product into a UPS
product. We start with the simpler cases and finish with the more complex ones. For all
categories of product, if your product has dependencies, either for building or for execution,
you need to have them available to you on your development system when you build and test
the product.

16.2.1 Unflavored Scripts

Unflavored scripts, that is scripts with the flavor NULL, are the simplest form of UPS product.
The example in section 16.1 shows how easy it is to create a UPS product from an unflavored
script. A product like this does not need to be rebuilt on different architectures, and generally
does not need CONFIGURE and UNCONFIGURE actions or scripts. Some, although very
few, unflavored scripts require INSTALLASROOT actions in the table file to copy specific
files into /usr/local/bin, or to perform similar actions.

We strongly discourage use of /usr/local/bin or any other hard-coded path; see section
15.1.1 under 15.1 Product Development Considerations and Recommendations.

Building UPS Products 16-5

16.2.2 Pre-built Binaries

Many third-party products obtained from a vendor or downloaded from the Web are binary
images without source code. When you go to a vendor’s web site, you will often find separate
pre-built binaries for several UNIX operating systems/releases. Note that they may use
slightly different terminology than we do to refer to the different flavors.

Generally, to run products that consist of executables (as opposed to libraries, for example),
you just need to add the executable directories to your $PATH after downloading. To make a
product compatible with UPS, you should provide a table file that modifies the $PATH, a
README file and some documentation. If the vendor provides examples and/or any other user
files, include them. Most products distributed in this manner include documentation, either
man pages or html files, and sometimes both.

Follow this general procedure:

• Create one master product root directory. Underneath it, create the product directory
structure, including at least a bin directory.

• Create the appropriate product subdirectories (html for Web documents, doc for
PostScript or other forms of documentation, man and/or catman for unformatted
and/or formatted man pages, respectively) and copy the vendor’s documentation into
them. You can opt to leave the documentation directory structure the same as the way it
is provided.

• Create a README file in the product root directory with relevant information such as
where this product was obtained, by whom, any licensing restrictions or other notes, and
so on.

• Create a table file. It can be modified later as needed, but at least a rudimentary table file
must exist in its actual location before declaring the product. In most cases, within the
table file, the product instance’s bin directory should be added to the $PATH within a
SETUP action, e.g.,:

 ACTION=SETUP

 pathPrepend(PATH, ${UPS_PROD_DIR}/bin, :)

• Create other ups directory scripts and data files as needed in the ups subdirectory.
(For most pre-built binaries you shouldn’t need any.)

• Declare the product to a UPS database with the chain development (-d) and no flavor
(-f NULL).

Now it’s time to create areas for each flavor of the product that you plan to install.

• Duplicate the product root directory tree once for each flavor of binary you plan to install
(using tar or other appropriate tool).

• For each flavor, copy the pre-built binary into the appropriate bin directory. This
usually involves unwinding a tar file.

• Declare the suite of product instances (one per flavor) to your UPS development
database for testing before you distribute them (strongly recommended!).

• Set permissions for all readable files to a+r. Set permissions for all scripts and other
executable files to a+x.

• Test each one out!

16-6 Building UPS Products

16.2.3 Products Requiring Build (In-House and
Third-Party)

Most locally developed products, and many vendor-supplied products, are distributed as
source code which must be rebuilt for each OS flavor. We are trying to get away from
UPS-packaging vendor-supplied products, however, we provide instructions in case you need
to do so.

If you are building a product which was obtained from an outside source, you may not have
control over the product directory hierarchy. Some outside products include configuration
options (via Makefiles) to specify where the resulting libraries and/or images should reside,
but in other cases you must give a hard-coded path to the final output file. In the latter cases,
when it is absolutely necessary, you may need to use UPS as a “bookkeeping” wrapper and
common point of distribution. Contact uas-group@fnal.gov for assistance.

If you are developing the product yourself, you should follow these guidelines:

• Store the master source code (and all the auxiliary files) in a CVS code repository (or
other code-version management system) according to your group’s policies.

• Use a sensible product directory hierarchy (src, lib, bin, html, doc, ups
subdirectories). See section 15.3 for recommendations.

• If the product needs to know its location (or that of its include files or auxiliary files), use
the local read-only variable ${UPS_PROD_DIR} or the run-time environment variable
$<PRODUCT>_DIR rather than a hard-coded path. Make sure that your table file sets
this variable.

Preparation for Rebuilding Any Product

For any product, you first need to create the infrastructure. Much of the work needs to be done
only once, and is reused for each flavor of the product that is built:

• Create the master source product directory hierarchy.

• Create/copy ups directory scripts, data files, and auxiliary files as needed in the ups
subdirectory.

• Create at least a basic table file (include QUALIFIERS=“BUILD” or “build”, and set
$<PRODUCT>_DIR under the SETUP action)

• Declare the product with the chain development and the flavor NULL+SOURCE-ONLY
to a local UPS database. Make sure that all UPS product requirements are declared
properly.

• Run setup -d -q "?build?BUILD" on the product to set $<PRODUCT>_DIR.

• Create source code in the src directory, or copy it there.

• Create a Makefile in the product root directory, ${UPS_PROD_DIR} (or simply write
a build script if a Makefile is overkill) to use for building the product binaries. For
reproducibility, make sure that you include all the steps to go from raw source to the
completed product. It is a good idea to have the Makefile or build script run a test suite
whenever possible.

• Modify the table file for SETUP and UNSETUP actions.

• Create documentation in the appropriate directories (html for Web documents, doc
for PostScript or other forms of documentation, man and/or catman for unformatted
and/or formatted man pages). Modify table file to note the locations.

 If the documentation came from the vendor in other locations, you don’t need to move it;
just indicate the locations in the table file.

Building UPS Products 16-7

• Keep track of any relevant information in a ${UPS_PROD_DIR}/README file. This
information should include where the source code came from, any tweaks that were
necessary to make it build, the node names and OS versions that were used to build the
binaries, known bugs, and so on.

• Set permissions to a+x for scripts and other executables, and to a+r for readable
files.

Steps for Rebuilding a Product

Once you have created the product structure along with all of the support files, you will need to
get down to the business of actually building the product images. If you’re planning on
redistributing this product to a wider audience than just your machine, you must be careful in
selecting a build node. The build nodes should have appropriate levels of compilers, OS, and
other products required for building the given product.

We recommend that you create separate build areas, one for each target flavor, so that the
different flavors of binary files do not get mixed up. Once you have completed the preparation
described above, complete these steps:

• Duplicate this source tree once for each target platform, using the file naming
conventions that have been established for your build cluster (use tar or other
appropriate tool, or you may need to check it out from version control).

• Declare these new directory trees each with its target flavor.

Then for each of the target flavors:

• Declare the product to the database using the flavor, optionally a chain of -d, and the
case-appropriate qualifier BUILD or build (e.g., -q BUILD). If this is a product which
creates links, make sure they were created properly and that each link points to the
correct parent product root directory!)

• Setup the product instance of that flavor in order to set $<PRODUCT>_DIR to the right
product root directory. Use both the -d (for development chain, if declared) and -q
BUILD (or -q build) options (i.e., setup -dq BUILD <product>).

• Invoke the product’s build procedure or Makefile to rebuild the product from scratch.

 If this is a product which is building files in a hard-coded path, check to make sure that
these files are being created properly. They should reside under the
${UPS_PROD_DIR} area, but via the symbolic links, they should appear to also
reside under the hard-coded directory.

16.2.4 Overlaid Products

An overlaid product gets distributed and maintained in the product root directory of its main
product. For example, the overlaid products cern_bin, cern_ups, cern_lib, etc., all reside in
the product root directory for the main product cern. A patch is another good example of the
use of overlaid products. The set of products overlaid on a main product is collectively
referred to as the overlay.

16-8 Building UPS Products

A special keyword, _UPD_OVERLAY, is provided for inclusion in the table file of each
overlaid product1. _UPD_OVERLAY takes as its value the main product name in double
quotes. Its presence indicates that the product is an overlaid product maintained in the root
directory of the main product listed as the keyword’s value. For example, the table files for the
products cern_bin, cern_ups, and cern_lib would contain the following keyword line:

_UPD_OVERLAY = "cern"

UPD would then use cern as the product name when determining the root directory.

In addition to including all the overlaid products as dependencies of the main product, we
recommend including the main product as a dependency of each of the overlaid products. This
allows separate installation of each of the pieces. Circular dependency lists are allowed in
UPS.

16.3 Sample Auxiliary Files

16.3.1 README

Following is the README file for the teledata v1_0 product. It has been edited for brevity,
but shows the kinds of information that are important to include:

This is the teledata product.

It contains the HTML files and data files for the Fermilab online

telephone directory.

The files in $TELEDATA_DIR/data are the data files, read by the

teleserver product. These files are updated daily.

The files in $TELEDATA_DIR/www are the html files, displayed by

the web server. These files are also updated daily; the A-Z.html

files are rebuilt from raw data, and the index.html, first.html

and last.html are given a new date stamp.

The HTML files must be visible from the web server’s default HTML

area. This is accomplished via links in /usr/local/products

(managed by "ups configure" and "ups declare -c") and links in

the system default HTML directory (handled by the web

administrator). The /usr/local/products links will be created

automatically when the product is declared. The web

administrator must create the link in the top-level "default"

HTML directory, via something similar to

 $ cd /path/to/default/html/area

 $ ln -s /usr/local/products/teledata/current/www telephone

This allows the URL

http://www-tele.fnal.gov/telephone/

to map to the file

1. UPS regards _UPD_OVERLAY as a user-defined keyword, but it is defined within
UPD.

Building UPS Products 16-9

$TELEDATA_DIR/www/index.html

...

The structure of the teledata product is:

$TELEDATA_DIR - parent product directory

 ups - directory containing ups support files

 configure, unconfigure - manage the /usr/local/products/teledata links

 current, uncurrent - manage the /usr/local/products/teledata/current links

 INSTALL_NOTE - link to this file

 data - directory containing data files

 RAWDATA - raw unprocessed data file

 NASTDATA - processed data file

 email - gdbm index file, keyed on email address

...

For further information, see the teleserver product, or please

contact support person name, telephone and email.

16.3.2 INSTALL_NOTE

The following is a sample INSTALL_NOTE from the netscape v4_5 product:

Fermilab installation of Netscape

The Fermilab ups product imposes certain structure upon

its products. To this end, a wrapper has been provided

which will assist in the downloading and re-structuring

of netscape for use at Fermilab.

To use this tool:

1. Upd install the install_netscape product.

2. setup install_netscape.

3. cd to $INSTALL_NETSCAPE_DIR and execute the

 netscape_install script. The optional

 argument specifies the directory in which

 to install netscape. The default is to

 install and declare netscape in

 $INSTALL_NETSCAPE_DIR.

16.3.3 RELEASE_NOTES

The following is a sample RELEASE_NOTES file from UPS v4_3. Notice that for each
release of the product, the new update information gets appended to the previous
RELEASE_NOTES file contents so as to retain all the update information:

UPS v4_3b

Fixed bug in upsact when doing WriteCompileScript for a product already setup.

EnvSetIfNotSet now has no undo.

Better handling of envremove/pathremove, especially for cases where the value
parameter uses backticks.

Better handling of exeAccess, eliminating the use of ’hash’ in the Korn shell family,
and printing error messages as appropriate.

UPS v4_3a

Fixed problem with ups verify outputting incorrect information about chains associated

with versions.

16-10 Building UPS Products

UPS v4_3

There are new template files in the ups area for the dbconfig file and the upsdb_list
file.

Many fixes were made to the configuration script, particularly for NT.

When UPS uses dropit, it will now always use the ’-e’ switch, for an exact match.

...

Making Products Available For Distribution 17-1

Chapter 17: Making Products Available For

Distribution

This chapter describes the processes of adding, updating, deleting and “cloning” product
instances or components1 on a product distribution system. Information on creating tar files,
using Fermilab CVS repositories and announcing products is also provided.

17.1 Product Distribution Overview

A set of UPD commands has been developed for adding, updating and deleting products on a
distribution node. They use the central Fermilab product distribution node fnkits.fnal.gov as the
default distribution node, and declare products in the KITS database. The commands can be
used to distribute products to any properly configured product server.

These UPD commands include:

upd addproduct adds a product instance to a product distribution database

upd cloneproduct creates a new product instance on a distribution node by
copying one that is already there and changing one or
more of its identifying elements

upd delproduct deletes a product declaration from a distribution database;
it also removes any associated tar file, table file and/or
ups directory

upd modproduct modifies a product instance that already exists in a
distribution database; it allows you to replace a table file
or ups directory, or to add or change chain information
for the product

upd repproduct is equivalent to a upd delproduct followed by a
upd addproduct; it can be used only when the
replacement product instance has the same set of
identifiers as the one destined for removal

These commands are fully described in Chapter 23: UPD/UPP Command Reference.

Before preparing to distribute a product, you should verify that it is complete, tested, and
UPS-compliant. It is optional to create a tar file of your product prior to running upd
addproduct, as discussed in section 17.2 Creating Product Tar Files. Keep in mind that the
UPD configuration on your target distribution node determines the locations in which products
get installed and declared on that node, and where their auxiliary files/directories get stored.
The configuration on the distribution node may bear no resemblance to that of your local

1. “Components” are defined as table files and ups directories.

17-2 Making Products Available For Distribution

development system, or to that of an end user node. Once your product has been added to a
distribution node, you need to make the appropriate announcements regarding product
availability (see section 17.10 Product Announcement Policies).

17.2 Creating Product Tar Files

You can choose whether to make your own tar file before adding your product to a distribution
node or to let UPD make it for you. The advantage of making it yourself is that you have
control over its contents.

Note that it is not necessary that the product instance’s table file or ups directory be included
in the product root directory or, consequently, in the tar file. Some products may not have one,
the other, or both of these components. On the other hand, other products (e.g., bundled
products) may consist only of a table file, in which case no tar file is needed. If these
components exist and are located outside of the product root directory, their location must be
specified in one of two ways when adding the product to the distribution node:

• on the upd addproduct command line

• in a UPS database declaration on your development machine (database must be listed in
$PRODUCTS)

When creating a tar file of a product using the tar command, perform the operation from the
product root directory. This allows you to use simple relative path names to specify the files to
include in the tar file. Use an absolute pathname (preferably to a temporary directory) to
specify where to put the tar file. Do not use absolute pathnames to specify the files to include
in the tar file.

Do not use the product root directory as the destination for the created tar file; it causes the tar
file to try to include itself and to grow infinitely large.

The following steps illustrate the conventions for packing up a tar file for a UPS product called
fred in such a way that (a) the tar file contains a relative path to the product root directory, and
(b) the tar file is put in an appropriate temporary directory:

% setup [-d] fred

% cd $FRED_DIR

% tar cvf /tmp/fred_IRIX+5_v1_0.tar .

This creates a tar file called /tmp/fred_IRIX+5_v1_0.tar with all pathnames relative
to the current directory ($FRED_DIR).

You should not replace the trailing dot in the example above with $FRED_DIR because that
would force the tar file to contain an absolute path to the $FRED_DIR as set on your system,
instead of a relative path to the $FRED_DIR on the target system where the tar file will be
unwound.

Using template_product (described in Chapter 18: Using template_product to Build and
Distribute UPS Products) allows you to customize the contents of your tar file. See section
18.8 Customizing your Tar File.

Making Products Available For Distribution 17-3

17.3 Adding a Product

Use the upd addproduct command to add a new product instance to a distribution server.
If no host name is specified with the -h option, UPD uses the fnkits.fnal.gov host as the
default. The required command line arguments differ depending on what components the
product has and whether it’s been declared to a local UPS database and/or archived with tar.
Refer to the reference section 23.1 upd addproduct for the full command syntax and options
for these different situations.

A few notes:

• When using upd addproduct -h <host>, use the full hostname (i.e.,
hostname.fnal.gov rather than just hostname) to prevent problems when people
download the product to off-site user nodes.

• The -P option is available to prevent UPS from searching in a local database for the
product instance. If you use it, you must specify sufficient information on the command
line so that UPS/UPD can identify and locate all the product components.

• Chain information remains identical for the added product instance on the local and
distribution nodes under most circumstances. If -P is used, local chain information is
ignored, but can be set on the distribution node. You can use upd modproduct
afterwards to change the chain.

• If the product is not declared to a local database, you must include -m
<tableFileName> on the command line. You must also include -M
<tableFileDir> if the table file is not in the current directory.

17.3.1 Product Categories Defined for KITS

The central Fermilab Computing Division product distribution database KITS, located on the
server fnkits.fnal.gov, recognizes several different categories of product:

default regular products added to the KITS database for distribution to
any on-site or registered off-site node.1

FermiTools locally-developed and supported software packages that we make
available to the public

proprietary products for which Fermilab has a limited number of licenses

fnalonly products accessible only to the fnal.gov domain

usonly US-only (United States only) products are accessible only to U.S.
government (.gov) and military (.mil) domains

Most products fall into the default category, and can be added normally. For the other
categories, you must first fill out the Special UPD Product Registration form (at
http://fnkits.fnal.gov/specialprod.html) indicating which category of
product it is, and submit the form. Then when you receive an email message saying that your
product has been registered as a special product, go ahead and add it to fnkits. Do not use any

1. See the Product Distribution Platform Registration Request form at
http://www.fnal.gov/cd/forms/upd_registration.html.

17-4 Making Products Available For Distribution

special options (i.e., do not use -O "<options>") with upd addproduct; your
product will automatically be configured to handle the special requirements according to your
selection on the form.

17.3.2 Examples

Example 1

We have a product instance with a table file and a ups directory (in addition to all the
product files) under the product root directory. The table file is in the ups directory. The
product (we’ll call it foo version v1_0), was developed for the flavor SunOS+5. The tar file
has not been made ahead of time. In order for UPD to make the tar file for us, the product
instance must be declared to a local UPS database listed in $PRODUCTS.

To add the product to KITS, the command can be entered from a SunOS+5.x machine as:

% upd addproduct foo v1_0 -2

Notice we’ve used the option -2 which is equivalent in this case to -f SunOS+5. All of
the other necessary information gets picked up from the local UPS declaration.

If we choose to ignore the local declaration via the -P option, we must supply the necessary
information in the command:

% upd addproduct foo v1_0 -2 -P -r /path/to/prod/root/dir \
-m v1_0.table -M /path/to/prod/root/dir/ups \
-U /path/to/prod/root/dir/ups

Example 2

Let’s use the same product as in Example 1, but assume that a tar file already exists. The
pre-made tar file includes the entire structure under the product root directory. The tar file is
located on our local machine in /tmp/foo_v1_0_SunOS+5.tar. We want to add it to
fnkits and declare it to the KITS database with the full development machine flavor
specification, no qualifiers, and no chain.

Assuming this product instance was declared to a local UPS database before the tar file was
created, we use the command:

% upd addproduct foo v1_0 -2 -T /tmp/foo_v1_0_SunOS+5.tar

UPD can determine where to find the table file and ups directory on the local node by
querying the local UPS declaration. However, if the product instance had not been declared to
any local UPS database, we would need to specify the table file name and location. We would
also need to specify the ups directory if it were other than ${UPS_PROD_DIR}/ups1,
which is the default location. A sample command that would work for this case is:

% upd addproduct foo v1_0 -2 -T /tmp/foo_v1_0_SunOS+5.tar \
-m foo.table -M ups

1. ${UPS_PROD_DIR} is one of a set of local UPS read-only variables listed in section
34.6 Local Read-Only Variables Available to Functions. It takes the same value as
$<PRODUCT>_DIR, the product root directory.

Making Products Available For Distribution 17-5

If the command succeeds, UPD returns a message indicating that the product was successfully
transferred and declared. After the product is added, we can run the upd list -a
command to see the declaration in KITS:

% upd list -a foo v1_0

DATABASE=/ftp/upsdbusr

 Product=foo Version=v1_0 Flavor=SunOS+5

 Qualifiers="" Chain=""

If we had wanted to declare the product in KITS for several flavors (assuming
flavor-independence in the product), we could have specified them in the command as follows:

% upd addproduct foo v1_0 -f IRIX+5:SunOS+5:OSF1_v3 \
-T /tmp/foo_v1_0_ANY.tar -m foo.table -M ups

Example 3

This next product, footwo v1_0, has no table file (thus no -m or -M needed), and it has a
ups directory external to the product root directory. We want to declare it to the (fictional)
node dist_node.fnal.gov with the test chain (-t), the flavor NULL (-0), and the qualifier
“debug” (-q "debug"):

% upd addproduct footwo v1_0 -t0q "debug" \
-h dist_node.fnal.gov -T /tmp/footwo_v1_0_NULL.tar \
-U /local/path/to/ups/dir

After it is added, we can run the upd list -a command to see the declaration on the
distribution node:

% upd list -a -h dist_node footwo v1_0

DATABASE=/path/to/dist_db

 Product=footwo Version=v1_0 Flavor=NULL

 Qualifiers="debug" Chain="test"

17.4 Adding an Independent Table File

You need to use upd addproduct to add a new table file product (i.e., a table file that
isn’t a component of a product instance). Bundled products are usually table files, for
example. To replace a table file that is a component of a product instance already declared to
the database on the distribution node, use upd modproduct as described in section 17.5
Replacing a Component (Table File or ups Directory).

If the independent table file is declared to a local database, the command syntax is:

% upd addproduct [<flavor_option>] [<other_options>] <product>\
<version>

If the table file is not declared, the command syntax becomes:

% upd addproduct [-P] <flavor_option> -m <tableFileName> \
[-M <tableFileDir>] [<other_options>] <product> <version>

17-6 Making Products Available For Distribution

Example

The product foothree v1_0 consists only of a table file (it may be a bundled product); therefore
no tar file needs to be specified (no -T option). We want to add it and declare it to KITS
with no chain, no qualifiers, and the flavor IRIX. We do not assume that it’s been declared to a
local UPS database:

% upd addproduct foothree v1_0 -f IRIX -m foothree.table -M \
/local/path/to/table/file

The system returns a message saying there is no product root directory. This is correct
behavior, and is expected.

After the table file product is added, we can run the upd list -a command to see its
declaration in KITS:

% upd list -a foothree v1_0

DATABASE=/ftp/upsdbusr

 Product=foothree Version=v1_0 Flavor=IRIX

 Qualifiers="" Chain=""

17.5 Replacing a Component (Table File or
ups Directory)

Use upd modproduct to update the table file or ups directory of a product already
existing on the distribution node. This command cannot query the local UPS database to find
information the way upd addproduct can; all necessary information must be specified
on the command line. To replace a table file, the command syntax is:

% upd modproduct <flavor_option> -m <tableFileName> \
[-M <tableFileDir>] [<other_options>] <product> <version>

Note: You must include the -m option specifying the table file name, as there is no default.
You must also include -M if the table file is not in the current directory.

For replacing a ups directory, the syntax is:

% upd modproduct <flavor_option> -U <upsDir> \
[-m <tableFileName>] [-M <tableFileDir>] [<other_options>]\
<product> <version>

If the ups directory contains a newer table file that should replace the old one on the
distribution node, include the -m and -M options in the command.

Example: Table File

Let’s replace the table file in KITS for the product foo v1_0, from Example 1 of section 17.3.
The new table file, foo.table, has replaced the old one in the product instance’s local ups
directory. It doesn’t matter if the tar file has been remade, since we’re not going to send it
anyway.

% upd modproduct foo v1_0 -2 -m foo.table \
-M /local/path/to/ups/dir

Making Products Available For Distribution 17-7

If you issue the command from the directory specified by -M, then you don’t need to include
it on the command line.

Example: ups Directory

To replace a product instance’s ups directory, use the upd modproduct command with
the -U option. Specify as much product instance information on the command line as
necessary to uniquely identify the instance in the distribution database to which this directory
is to belong. Do not make a tar file of the ups directory on your local machine. We illustrate
with a product called foofour v1_0, flavor SunOS, no qualifiers, and use KITS.

It doesn’t matter whether the product instance is declared to a UPS database listed in
$PRODUCTS, since upd modproduct won’t query the database anyway. Regardless of
its location, the ups directory location must be fully specified, for example:

% upd modproduct foofour v1_0 -f SunOS \
-U /local/path/to/ups/dir

17.6 Adding/Changing a Chain

A product instance on a distribution node generally has at most one chain associated with it at
any time.1 Whenever you change a chain with upd modproduct, you automatically delete
any and all previously assigned chains. The command syntax is:

% upd modproduct <flavor_option> <chain_option> \
[<other_options>] <product> <version>

Example 1

Product foo (of Example 1 in section 17.3) has no chain in its KITS declaration. We now
wish to declare a test chain for it. We run the upd modproduct command with the -t
option (or -g test works too), as follows:

% upd modproduct foo v1_0 -f SunOS+5 -t

Running upd list -a now displays:

% upd list -a foo v1_0

DATABASE=/ftp/upsdbusr

 Product=foo Version=v1_0 Flavor=SunOS+5

 Qualifiers="" Chain="test"

Example 2

This time we want to change an existing chain. Let’s change the test chain for foo (declared in
Example 1, above) to current. This will remove the test chain.

% upd modproduct foo v1_0 -f SunOS+5 -c

Running upd list now displays:

1. A product instance can have multiple chains if they are declared together in the same
command (e.g., upd modproduct -g test:current ...).

17-8 Making Products Available For Distribution

% upd list foo v1_0

DATABASE=/ftp/upsdbusr

 Product=foo Version=v1_0 Flavor=SunOS+5

 Qualifiers="" Chain="current"

Notice that since we were looking for a current version, we didn’t need to specify -a in the
upd list command.

Example 3

To remove a chain on an instance without assigning a new one or assigning the chain to a
different instance, you can use:

% upd modproduct foo v1_0 -f SunOS+5 -g :

This often generates warnings, but it works and causes no database problems.

17.7 Deleting a Product or Component

The upd delproduct command lets you delete a product declaration plus the product
itself and its associated files and directories. The product subdirectory itself does not get
deleted. You do not have the choice of leaving an undeclared product in the products area on
the distribution node. The command syntax is:

% upd delproduct -f <flavor_option> [<other_options>] \
<product> <version>

Example 1

Let’s delete the product foo v1_0 (from Example 2 in section 17.6):

% upd delproduct foo v1_0 -cf SunOS+5

Example 2

Let’s delete the product foothree v1_0 from section 17.4. It’s just a table file.1

% upd delproduct foothree v1_0 -f IRIX

17.8 Cloning a Product

Use upd cloneproduct to create a new product instance on a distribution node by
copying one that is already there and changing one or more of its identifying elements.

1. If there were a product that consisted only of a ups directory (unlikely), upd del-
product would work for that too.

Making Products Available For Distribution 17-9

The command syntax is:

% upd cloneproduct <flavor_option> [<source_options>] \
<product> [<version>] -G "<target_options>"

where source refers to the original instance, and target to the cloned one.

To clone a product, you specify the usual UPS/UPD options to identify the product, and then
use the -G option to specify which attributes of the clone should be different from the
original.

Why would you want to do this? For example, say that an existing product for the flavor
IRIX+5 is found to be appropriate for IRIX+6, too. In this case, you might want the product to
appear on the distribution server listed under both flavors. You could install the product on
your local system, redeclare it, and add it back to the distribution server, but a much quicker
and more efficient way is to use upd cloneproduct to clone the product instance right
on the distribution server. Here is a sample command for doing this:

% upd cloneproduct myproduct v1_0 -f IRIX+5 -G "-f IRIX+6"

You can put all sorts of options in the -G quoted argument list, including product and version
(with caveats); so you can even use upd cloneproduct to make a clone with a different
name, provided the product’s table file doesn’t specify the product name. For example, to
make a clone of myprod called newprod in KITS, you’d issue a command like this:

% upd cloneproduct myproduct v1_0 -f IRIX+5 -G "newprod"

A few caveats:

• Within the -G option structure on the upd cloneproduct command line, only
include options such that a stanza of the source product’s table file can be matched. A
failure to match sometimes creates a database inconsistency on the distribution node. In
particular, be careful about including qualifiers, e.g., -G "-q <qualifierList>",
if there is no stanza for Qualifiers = qualifierList.

• If you want product instance clones, one without qualifiers and the other with, add the
first instance without qualifiers, and clone it to a new instance with qualifiers. Going the
other way is error-prone.

• You can only make a clone with a different product name if the source product’s table
file doesn’t specify the product name.

17.9 Including Source in one of Fermilab’s
CVS Repositories

Different groups at Fermilab often depend upon each other’s software, and people need to be
able to rebuild products on occasion. The CVS Product Repositories have been created to
provide a structure allowing access to source code with revision tracking. The product
eligibility standards are described in the document Using Fermilab CVS Product Source
Repositories, on-line at
http://www.fnal.gov/docs/products/template_product/FermiReposit
ory/FermiRepository.html.

17-10 Making Products Available For Distribution

17.10 Product Announcement Policies

The separate groups within the Computing Division have differing policies for informing the
group members and the user community about product availability. Here we present a
checklist of the kinds of things you will be expected to do when you’re ready to make a
product available. We refer you to your group leader for information specific to your group.

Events which require notification actions on your part are:

• initially placing a product on fnkits, declared as “test” (recommended)

• declaring the product as current on fnkits

• installing the product in AFS space

• upgrading the product

• modifying or removing the product on/from fnkits

The general types of required actions are:

• Inform your group leader.

• Announce product according to group’s policy (newsgroups, product user mailing lists)

• Send email to helpdesk@fnal.gov to inform them about the new product or version.
Include information on the kinds of questions to expect, if possible, and where to direct
users for help.

• Install the product on fnalu for the general Fermilab community, if appropriate.

• Check all the chains on fnkits (and fnalu) to make sure that older versions, flavors, etc.
are no longer chained to current.

• Include source code for eligible product in a CVS Repository.

• Make documentation available on-line under
http://www.fnal.gov/docs/products/<product_name>. Include html
documentation.

• Fill out the on-line Computing Division Product Input Form at
http://cddocs.fnal.gov/cfdocs/productsDB/productinput.html
to inform the products database maintainer about your product arriving on fnkits.

Using template_product to Build and Distribute UPS Products 18-1

Chapter 18: Using template_product to Build

and Distribute UPS Products

In this chapter we describe the template_product product, and show how to use it to build and
distribute a product.

18.1 Overview

To simplify and somewhat automate the process of building UPS products, we have designed
the product template_product. Once this product is installed on your system, it can be cloned
into a new product area and “turned into” the new product. template_product can be used to
build products of all types (shell script, pre-built binary, source code).

The following is a summary of the steps involved when using template_product to build a
UPS-compatible product. Each step is described in detail later in this chapter:

1) Make sure template_product is installed on your system; install it if necessary

2) Setup template_product

3) Create a directory for your product

4) Clone template_product to create a template for your product in the new directory

5) Insert the product into the template

6) Setup and test the product

7) Distribute the product (using the Makefile provided with template_product)

Also discussed in this chapter are:

• customizing a tar file

• adding a product to a CVS repository

• removing a product from a distribution node using the provided Makefile

18-2 Using template_product to Build and Distribute UPS Products

18.2 Accessing template_product

The template_product product may already be installed on your system. If not, download it
from the distribution node and install it into the main products area on your system by using
the usual installation commands:

% setup upd

% upd install template_product

18.3 Cloning template_product

Next you need to setup template_product, make a directory to hold your new product, and
clone template_product into this new area using a script that comes with it called
CloneTemplate. You need to provide the name and version of your product to this script
(we use newprod v1_0 in this example). Enter this sequence of commands:

% setup template_product

% mkdir /tmp/newprod

% cd /tmp/newprod

% CloneTemplate

Product name? newprod

Product version? 1.0

Platform specific product [yN]? y

Dependant products [list as fred:joe:harry]?

installing template product files in /tmp/newprod

/newprod

/tmp/newprod/.

/tmp/newprod/.header

/tmp/newprod/.manifest.template_product

/tmp/newprod/ups

/tmp/newprod/ups/Version

/tmp/newprod/ups/INSTALL_NOTE.template

/tmp/newprod/ups/template_product.table

/tmp/newprod/ups/.manifest.template_product

/tmp/newprod/Makefile

/tmp/newprod/test

/tmp/newprod/test/TestScript

/tmp/newprod/README.template

42 blocks

Customizing product as newprod...

16955

for Flavored products

?

 for NULL products

 for NULL products

QUALS is added qualifiers, like: "QUALS=mips3:debug"

#

 UPS_SUBDIR=ups

Using template_product to Build and Distribute UPS Products 18-3

for Flavored products

 FLAVOR=$(DEFAULT_FLAVOR)

 QUALS=""

for NULL products

FLAVOR=$(DEFAULT_NULL_FLAVOR)

QUALS=""

##--

Files to include in Distribution

16957

The files listed in the command output have now been copied into the new product directory,
and Makefile and ups/template_product.table have been
customized/renamed for the product. Note that the output shows the full pathname to the
created files even though you are working from within this new product directory.

18.4 The Top-Level Makefile

The cloning of template_product creates a Makefile in the new product’s root directory, e.g.,
/tmp/newprod/Makefile. In order for this Makefile to know what it needs to about the
new product, you generally need to make a few changes to the top page or so, e.g., change the
flavor, add build instructions, and so on. Changes of this type are discussed in section 18.6.3
Add Build Instructions to Top-Level Makefile. You can also add commands to other targets.

The first part of the file is reproduced here for reference (comments not shown):

 SHELL=/bin/sh

 DIR=$(DEFAULT_DIR)

 PROD=newprod

 PRODUCT_DIR=MYPROD_DIR

 VERS=v1_0

 TABLE_FILE_DIR=ups

 TABLE_FILE=newprod.table

 CHAIN=development

 UPS_SUBDIR=ups

 ADDPRODUCT_HOST=fnkits.fnal.gov

DISTRIBUTIONFILE=$(DEFAULT_DISTRIBFILE)

 FLAVOR=$(DEFAULT_FLAVOR)

 OS=GENERIC_UNIX

 QUALS=

 CUST=none

...

#--

all: proddir_is_set build_prefix

clean:

 rm -f $(PREFIX)

spotless:

test: proddir_is_set clean FORCE

 sh test/TestScript

...

18-4 Using template_product to Build and Distribute UPS Products

18.5 Inserting your Product into the Template

Now you need to add your actual program into the template_product clone, and run build
instructions, if any. For shell scripts and pre-built binaries, all you need to do is create a bin
directory under the product root, and put the executable in it. For source code, you need to first
create a src directory under the product root, put the source file in it, and then build the
product as described in the next section, 18.6 Building the Product.

18.6 Building the Product

18.6.1 Add Build Instructions

We recommend that you create a Makefile (separate from the one provided) to ensure
reproducibility of the build procedure. Create or copy the Makefile in the src directory, and
include a build target, e.g., install, as shown (again, we use echo to create the file since
it’s very simple for this example):

% echo "install:; cp hello ../bin" > Makefile

18.6.2 Run the Initial Build

Now create the bin directory under the product root, and run make to complete the build:

% mkdir ../bin

% make hello install

cc -o hello hello.c

cp hello ../bin

18.6.3 Add Build Instructions to Top-Level Makefile

Now it’s time to customize the top-level Makefile created by CloneTemplate (refer to
section 18.4 The Top-Level Makefile for a partial file listing). Typical macro definitions that
need to be changed for a compiled program are:

 FLAVOR=$(DEFAULT_FLAVOR)

 OS=$(DEFAULT_OS)

 QUALS=

 CUST=$(DEFAULT_CUST)

Next, add the build instructions under the all target. For this example, they are the two
commands that were just run (mkdir and make).

all: proddir_is_set build_prefix

 -mkdir bin

 cd src; make hello install

Using template_product to Build and Distribute UPS Products 18-5

18.6.4 Rebuild Instructions

The next time this product requires a build, you would just run the command:

% make [all]

from the product root directory.

18.7 Testing your Product

Now you can setup and test your product. As an example, for our product we might run:

% setup newprod v1_0 -r $cwd -M ups -m newprod.table

or, for Bourne shell,

$ setup newprod v1_0 -r ‘pwd‘ -M ups -m newprod.table

followed by:

% hello

hello world

% unsetup newprod v1_0

% hello

sh: hello: command not found

After testing, edit the test/TestScript file so that it tests your software. In many cases,
writing a good test script can be rather challenging. Include at least a basic test to ensure that
the product works properly. For our example, the test script just needs to run our hello
program and verify its output, e.g.,:

#!/bin/sh

hello | grep "hello world" > /dev/null

This will exit with a successful exit code if hello prints hello world, and fail otherwise.

18.8 Customizing your Tar File

Products generally get distributed as tar files. The template_product top-level Makefile can
be used to make a product tar file and add it to the distribution node in one step. There are
several variables in the Makefile that control what template_product includes in the tar file it
makes of a product:

ADDDIRS="<dir1> <dir2> <dir3>..."

18-6 Using template_product to Build and Distribute UPS Products

lists directories whose non-CVS-bookkeeping-files should be
added. The default is for this to be set to “.”, the current directory,
and the other variables left blank. If you only wanted to include the
bin and lib directories of your product build area, you would
specify ADDIRS=bin lib.

ADDFILES= "<’find’ command options>"

lists file wildcards to include or exclude with find(1) options.
E.g., to exclude files ending in tilde (i.e., emacs backup files),
specify ADDFILES= ! -name ’*~’.

ADDEMPTY="<dir1> <dir2> <dir3>..."

lists empty directories to include in the product tar file. By default
the tar command does not include empty directories in a tar file.
Listing empty directories here causes them to be added.

ADDCMD="<command>"

specifies a command that generates a list of files on standard
output. These files will then be included in the tar file. This could
be used, for example, to use an explicit file inclusion list like
ADDCMD="cat my_file_list".

Or it could be used to specify a find command with filtering,
sorting, and so on, e.g.,

ADDCMD= "find . ! -name ’*.o’ | egrep -v \
’/foo/|/bar/’ | sort -u"

These values are all combined by running the following sequence of commands in the
Makefile:

 (

 for d in .manifest.$(PROD) $(ADDEMPTY); do echo $d; done

 test -z "$(ADDDIRS)" || find $(ADDDIRS) $(PRUNECVS) ! -type d -print

 test -z "$(ADDFILES)" || find . $(PRUNECVS) $(ADDFILES) ! -type d -print

 test -z "$(ADDCMD)" || sh -c "$(ADDCMD)"

)

(where PRUNECVS holds find options to prevent find from going into CVS
directories). This generates a long list of files that get added to the tar file.

18.9 Adding your Product to a Distribution
Node

The Makefile for template_product is set up to allow distribution to fnkits by default:

• The macro ADDPRODUCT_HOST, which indicates the distribution node to which
products get added, is set to the default value fnkits.fnal.gov.

• Under the section called Standard Product Distribution/Declaration Targets the target
kits is configured to add a product to fnkits and declare it to the KITS database.

To add a product to a different distribution node (e.g., distnode.fnal.gov):

• change the value of the macro ADDPRODUCT_HOST to distnode.fnal.gov

Using template_product to Build and Distribute UPS Products 18-7

• add the target distnode: addproduct to the distribution section

• and run the make command with the new target, e.g., make distnode

18.9.1 Add Product to fnkits

Keeping the defaults in place, simply change to the directory of your product and run make
kits:

% cd /tmp/newprod

% make kits

rm -f /tmp/build-newprod-v1_0

creating .manifest...

creating /tmp/newprod/../newprodSunOS+5v1_0.tar...

/tmp/newprod/../newprodSunOS+5v1_0.tar:

-rw-rw-r-- mengel/oss 0 Apr 1 11:19 1998 .header

-rw-rw-r-- mengel/oss 381 Apr 1 11:18 1998 .manifest

-rwxrwxr-x mengel/oss 5 Apr 1 11:07 1998 ./ups/Version

-rwxr-xr-x mengel/oss 55 Apr 1 11:07 1998 ./ups/INSTALL_NOTE

-rwxr-xr-x mengel/oss 43 Apr 1 11:07 1998 ./ups/setup.csh

-rwxr-xr-x mengel/oss 49 Apr 1 11:07 1998 ./ups/setup.sh

-rwxr-xr-x mengel/oss 43 Apr 1 11:07 1998 ./ups/unsetup.csh

-rwxr-xr-x mengel/oss 49 Apr 1 11:07 1998 ./ups/unsetup.sh

-rwxr-xr-x mengel/oss 15 Apr 1 11:07 1998 ./ups/current

-rwxr-xr-x mengel/oss 15 Apr 1 11:07 1998 ./ups/uncurrent

-rwxr-xr-x mengel/oss 15 Apr 1 11:07 1998 ./ups/configure

-rwxr-xr-x mengel/oss 15 Apr 1 11:07 1998 ./ups/unconfigure

-rwxr-xr-x mengel/oss 462 Apr 1 11:07 1998 ./ups/action.table

-rw-r--r-- mengel/oss 19858 Apr 1 11:14 1998 ./Makefile

-rw-r--r-- mengel/oss 190 Mar 30 17:21 1998 ./README

-rwxr-xr-x mengel/oss 87 Feb 5 16:32 1998 ./test/TestScript

-rw-rw-r-- mengel/oss 36 Apr 1 11:08 1998 ./src/hello.c

-rw-rw-r-- mengel/oss 26 Apr 1 11:09 1998 ./src/Makefile

-rwxrwxr-x mengel/oss 5380 Apr 1 11:09 1998 ./src/hello

-rwxrwxr-x mengel/oss 5380 Apr 1 11:09 1998 ./bin/hello

upd addproduct -h fnkits -T "/tmp/newprod/../newprodSunOS+5v1_0.tar" \

 -M ups -m action.table -U ups -f SunOS+5

upderr::upderr_syslog - successful ups declare newprod v1_0 \

 -T ftp://fnkits/ftp/products/newprod/v1_0/SunOS+5.tar -f SunOS+5 \

 -r /ftp/products/newprod/v1_0/SunOS+5 -z /ftp/upsdb -q "" \

 -M /ftp/upsdb/newprod -m v1_0.table

rm -f "/tmp/newprod/../newprodSunOS+5v1_0.tar"

After adding your product, use upd list to check that it arrived properly:

% upd list -a newprod

DATABASE=/ftp/upsdb

 Product=newprod Version=v1_0 Flavor=SunOS+5

 Qualifiers="" Chain=""

18.9.2 Specify Multiple Flavors

To add different flavors of the same product without having to modify the Makefile, you may
find it convenient to specify the flavor on the make command line, e.g.,

% make "FLAVOR=SunOS+5" kits

18-8 Using template_product to Build and Distribute UPS Products

or, more generally,

% make "FLAVOR=${UPS_FLAVOR}" kits

18.10 Adding your Product Source to a CVS
Repository

At this point, your product is eligible for inclusion in one of Fermilab’s CVS repositories. This
allows tracking of the software revisions, and allows other people to find it, get a particular
version, and build it if they need to. The eligibility standards are described in the document
Using Fermilab CVS Product Source Repositories, at
http://www.fnal.gov/docs/products/template_product/FermiReposit
ory/FermiRepository.html.

First set up CVS appropriately for the repository you’re going to use (the example shows
fermilab), then import your product:

% cvs import newprod v1_0 fermilab

18.11 Removing your Product from a Distri-
bution Node

A special target is provided in the top-level Makefile to remove a product from KITS,
namely:

unkits: delproduct

To remove your product from the KITS database on the fnkits node, just run the command:

% make unkits

upd delproduct -h fnkits -f SunOS+5 newprod v1_0

upderr::upderr_syslog - successful ups undeclare newprod v1_0 -f SunOS+5

If your product is on a distribution node other than fnkits, the Makefile has probably already
been edited to recognize that node (see section 18.9 Adding your Product to a Distribution
Node). Add a target analogous to the unkits target. For example if you have:

distnode: addproduct

then add the target:

undistnode: delproduct

To remove the product, run the command:

% make undistnode

Checklist for Building and Distributing Products 19-1

Chapter 19: Checklist for Building and

Distributing Products

In this chapter we summarize the steps for preparing to build a product, building it and
distributing it. We include information about making the appropriate announcements when a
new or upgraded product is available.

19.1 Pre-build Checklist

1) Create product root directory structure. Here is a comprehensive list of product
elements and their suggested subdirectories (most products don’t require all of them):

· README (top-level) and RELEASE_NOTES files (top-level or ups)

· INSTALL_NOTE file (ups)

· top-level Makefile

· executables (bin)

· table file and other installation-independent files/scripts (ups)

· source code and build instructions (src)

· Makefile for build (src)

· html user documentation (html)

· PostScript or text user documentation (doc)

· unformatted man pages (ups/toman/man)

· formatted man pages (ups/toman/catman)

· test scripts (test)

· examples (examples)

· libraries (lib)

· include files (include)

 If you use template_product, the operation of cloning it creates the product root
directory, the top-level file templates and Makefile, several of the listed subdirectories,
and a basic table file.

2) For shell script or pre-built binary products, put the executable file(s) in the
${UPS_PROD_DIR}/bin directory.

 For products requiring build, create the file ${UPS_PROD_DIR}/src/Makefile.
(Include instructions for compiling, linking, testing and all other necessary operations,
as well as for copying the final binaries into ${UPS_PROD_DIR}/bin.) Insert the
product source code into ${UPS_PROD_DIR}/src.

19-2 Checklist for Building and Distributing Products

3) Include documentation (html, man pages, user guide).

4) Create/edit README (and INSTALL_NOTE and RELEASE_NOTES as needed).
See samples in sections 16.3.1 README, 16.3.2 INSTALL_NOTE and 16.3.3
RELEASE_NOTES. template_product creates template files that you need to edit.

5) Create/edit the table file (usually under ${UPS_PROD_DIR}/ups). See section 35.6
Table File Examples. template_product creates a basic one that you need to edit.

6) Create any extra scripts your product needs in ${UPS_PROD_DIR}/ups. See
Chapter 36: Scripts You May Need to Provide with a Product for examples.

7) Create/edit the top-level Makefile (include targets for building the product, setting
permissions, testing, distributing, and so on). Section 18.4 The Top-Level Makefile lists
the first part of the Makefile that comes with template_product, for reference.

8) (Optional) Declare the product to a local database (use the -d flag).

9) Store the master source code and all the auxiliary files in a CVS code repository (or
other code-version management system) according to your group’s policies.

 For OSS group: CVSROOT=cvsuser@cdcvs.fnal.gov:/cvs/cd.

19.2 Build the Product

10) Verify that dependencies required for build are present.

11) Build the product using ${UPS_PROD_DIR}/src/Makefile (should get called
by top-level Makefile).

12) Set permissions to a+x for scripts and other executables, and to a+r for readable
files (should get done by top-level Makefile).

13) If using template_product, modify the top-level Makefile to include build
instructions and other targets, as needed, and use the top-level Makefile for subsequent
builds.

19.3 Test the Product

14) Declare the product to a local database, if you haven’t already.

15) Verify that dependencies are present.

16) Run ups verify on the product to check the integrity of the database files (this
command is described in section 22.19 ups verify).

17) Setup and test the product (test scripts should get run by top-level Makefile).

Checklist for Building and Distributing Products 19-3

19.4 Distribute to fnkits as “test”

18) Make sure you’re registered to add products to fnkits. (Send email to compdiv@fnal
to request authorization.)

19) If product should have special access restrictions, fill out the Special UPD Product
Registration form (at http://fnkits.fnal.gov/specialprod.html).

20) (Optional) Make a tar file of your product.

21) Add the product to fnkits as “test”.

 If using template_product, run make kits from the product root directory (it sets
the chain to whatever CHAIN is set to in the Makefile). Otherwise use upd
addproduct (should be called from your top-level Makefile). Here is a sample upd
addproduct command:

% upd addproduct \

<product> [<version>] \ # product name and version

-t \ # "test" chain

[-f <flavor>] \ # flavor

[-q <qualifierList> \ # qualifiers

[-T <tarFile>] \ # path to tar file

[-m <tableFile>] \ # table file name

19.5 Announce the Product

22) Make documentation available on-line under
http://www.fnal.gov/docs/products/<product_name>
(/afs/fnal.gov/files/docs/products/<product_name>). Include
html documentation.

23) Fill out the on-line Computing Division Product Input Form at
http://cddocs.fnal.gov/cfdocs/productsDB/productinput.html
to inform the products database maintainer about your product arriving on fnkits.

24) If appropriate, install the product from fnkits onto fnalu as “test”.

25) Post news to fnal.announce.products, fnal.announce.unix (if it is a
UNIX product), fnal.sys.fnalu.announce (if installed on fnalu).

26) Create <product>-users@fnal.gov mailing list (if appropriate), and send email
announcing test phase.

19-4 Checklist for Building and Distributing Products

19.6 Distribute to fnkits as “current”

27) Wait suitable time (amount of time depends on product).

28) Fix problems found during test phase.

29) Rebuild product.

30) Commit changes to CVS.

31) Put final release into fnkits as “current”.

32) Reinstall as “current” on fnalu, as appropriate.

33) Check all the chains on fnkits (and fnalu) to make sure that older versions, flavors, etc.
are no longer chained to “current”.

34) Post news to fnal.announce.products, fnal.announce.unix (if it is a UNIX product),
and fnal.sys.fnalu.announce (if installed on fnalu).

35) Send email to <product>-users@fnal.gov announcing current phase.

36) Send email to helpdesk@fnal.gov to inform them about the new product or version.
Include information on the kinds of questions to expect, if possible, and where to direct
users for help.

Developer’s Reference VIII-1

Part VIII Developer’s Reference

Chapter 33: Actions and ACTION Keyword Values

Table files and UPD configuration files often include stanzas which we call
actions. We describe actions in this chapter.

Chapter 34: Functions used in Actions

There is a set of supported functions that can be used in action stanzas. In
this chapter we give a general overview of functions, list and describe all the
supported functions, provide a couple of examples of functions within
actions, and list all the read-only variables available to the supported
functions.

Chapter 35: Table Files

This chapter describes table files. Table files contain product-specific,
installation-independent information. Most, but not all, products require a
table file. UPS product developers are responsible for providing the table
files associated with their products.

Chapter 36: Scripts You May Need to Provide with a Product

In UPS v4, the functions supported for use in table file actions will not
always suffice for completing certain tasks, for instance configuration and
tailoring. You may still need to provide executable scripts, and include
appropriate functions in your table file to execute them. In this chapter we
discuss some scripts you may need to provide with your product.

Chapter 37: Use of Compile Scripts in Table Files

Compile scripts can be used in table files to preprocess actions, thus
speeding up considerably the time it takes users to execute the actions. We
describe the use of compile scripts in this chapter.

Chapter 38: Creating and Formatting Man Pages

In this chapter we show you how to create man pages, format them, and even
create html documents from them. This is not a comprehensive man page
reference, but it contains sufficient information for most purposes.

VIII-2 Developer’s Reference

Actions and ACTION Keyword Values 33-1

Chapter 33: Actions and ACTION Keyword

Values

Table files and UPD configuration files often include stanzas which we call actions. We
describe actions in this chapter.

33.1 Overview of Actions

An action is a construction that identifies a UPS or user-defined operation via the ACTION
keyword (defined in section 27.4 List of Supported Keywords), and lists functions to perform,
in addition to any internal processes, when the operation is executed. An action can be called
by a UPS command, a user-defined UPS-style command, or by another action. An action
stanza has the format:

 ACTION=<VALUE>

 <function_1>([<argument_1>] [, <argument_2>] ...)

 <function_2>([<argument_1>] [, <argument_2>] ...)

 ...

As for all keyword values, the VALUE is not case-sensitive. Nor are the functions, although
some arguments are. The supported ACTION keyword values include:

• strings that correspond to UPS commands

• chains and “unchains” (explained in section 33.3.2 “Unchains” as Keyword Values)

• user-defined strings handled by the Unknown Command Handler

The supported functions are listed in section 34.3 Function Descriptions.

33.2 UPS Command Actions

33.2.1 UPS Commands as Keyword Values

Most commonly, the ACTION keyword value is a string that corresponds to a UPS command.
The string is usually the command itself (minus the ups at the front, if it is part of the
command), e.g., SETUP, CONFIGURE, DECLARE. The supported strings in this category
include:

CONFIGURE and UNCONFIGURE

COPY

DECLARE and UNDECLARE

33-2 Actions and ACTION Keyword Values

GET

MODIFY

SETUP and UNSETUP

START

STOP

TAILOR

The UPS commands that cannot have a corresponding action in a table file are: ups
flavor and ups help (because no table file can be associated with them); ups
depend, ups list, and ups verify (because they can operate on more than one
database); and ups exist, ups modify and ups touch.

33.2.2 “Uncommands” as Keyword Values

Several of the UPS commands have “uncommand” counterparts, namely setup/unsetup,
ups declare/undeclare, ups configure/unconfigure. Generally, if the
“uncommand” is expected to undo everything that the original command did, and only that,
then including an ACTION=<UNCOMMAND> action in the table file is unnecessary.

Uncommands and Reversible Functions

If an “unaction” is not present, UPS will look for the corresponding
ACTION=<COMMAND>, and undo all the reversible functions that were performed. In
section 34.2 Reversible Functions we discuss reversible functions. If the “uncommand” needs
to do something other than the exact reversal of the command, include an “unaction” for it (i.e.,
ACTION=<UNCOMMAND>) and specify the functions to execute.

This works both ways. Say the original command is “uncommand” (e.g., ups
undeclare), and you have included ACTION=<UNCOMMAND> but not
ACTION=<COMMAND> in the table file. Then when you run “command”, UPS will
attempt to reverse all the functions listed under ACTION=<UNCOMMAND>.

Uncommands and Script Execution

For the functions sourceOptCheck, sourceOptional, sourceReqCheck, and
sourceRequired, the “uncommand” will execute an “unscript” in a similar way. You do
not have to specify an “unaction” in the table file as long as the scripts to source are in the
same directory and have matching script and “unscript” filenames (i.e., <scriptname>
and un<scriptname>). This also works both ways, as discussed above.

Here is an example. Say a CONFIGURE action specifies:

ACTION=CONFIGURE

 sourceOptional(${UPS_UPS_DIR}/configure.${UPS_SHELL},UPS_ENV)

When you run the ups unconfigure command, UPS first looks for
ACTION=UNCONFIGURE, as usual. Failing to find it, UPS next looks for
ACTION=CONFIGURE. Upon encountering the sourceOptional function, it searches
for the file unconfigure.${UPS_SHELL} in the same directory (${UPS_UPS_DIR}),
and sources it.

Actions and ACTION Keyword Values 33-3

33.3 Chain Actions

33.3.1 Chains as Keyword Values

Chain names are allowable as ACTION keyword values. This includes any predefined chain
name (as listed in section 1.3.5 Chains: CURRENT, TEST, DEVELOPMENT, OLD, NEW) or
any user-defined chain name (e.g., MY_CHAIN). Chain actions are executed when a chain of
the corresponding name is declared to a product instance via the ups declare command.
For example, if you declare an instance as current, ups declare -c looks for
ACTION=CURRENT.

Sometimes a UPS command executes more than one action. For example, the ups
declare -c command executes both the CURRENT and DECLARE actions, if they are
present.

33.3.2 “Unchains” as Keyword Values

Similarly, when a chain is removed from an instance (which can happen with either ups
declare or ups undeclare), UPS looks for the corresponding chain name preceded by
the “UN” prefix (e.g., UNCURRENT, UNTEST, UNMY_CHAIN).

The relationship between a chain action and its corresponding “unchain” action (e.g.,
CURRENT and UNCURRENT) is the same as between commands and “uncommands”, as
described in section 33.2.2 “Uncommands” as Keyword Values. For example, if an “unchain”
action is sought but not found, UPS will then look for the corresponding ACTION=<CHAIN>
and undo all the reversible functions listed there.

33.4 The “Unknown Command” Handler

The unknown command handler effectively allows you to define a UPS-like “unknown”
command for use with a product. To define one, include in the product’s table file an ACTION
with a unique value of your choosing, e.g., ACTION=XYZ. The corresponding command will
be ups xyz. The action should contain one or more supported functions (listed in section
34.3 Function Descriptions), as usual. Here is an example of what the action may look like:

ACTION=XYZ

 envSet(VARIABLE, value)

 sourceRequired(SCRIPT.csh, UPS_ENV_FLAG)

The command ups xyz is now available for you to use. Enough information must of
course be provided on the command line to locate the table file containing the action, e.g.,:

% ups xyz [<options>] <product> [<version>]

When it is executed, the unknown command handler locates ACTION=XYZ in the table file
and executes the functions listed under it.

User-defined ACTION keyword values (e.g., XYZ) do not need to start with underscore (_), as
contrasted with user-defined keywords (see section 27.2 Keywords: Information Storage
Format).

33-4 Actions and ACTION Keyword Values

Example

An example of the use of the unknown command handler can be found in the table file for the
product xemacs v20_4.

 ACTION=CONFIGURE

 Execute(echo "Do a ’ups blessmail xemacs’ as root to make mail work.",NO_UPS_ENV)

 ACTION=BLESSMAIL

 Execute(chgrp mail ${UPS_PROD_DIR}/lib/*/*/movemail, NO_UPS_ENV)

 Execute(chmod 2755 ${UPS_PROD_DIR}/lib/*/*/movemail, NO_UPS_ENV)

When the product instance is configured (via the first ups declare, or manually via the
ups configure command), an echo command prints to screen an instruction to run the
user-defined (“unknown”) command ups blessmail. This command is handled by the
unknown command handler. It finds ACTION=BLESSMAIL and executes the functions
associated with it.

33.5 Actions Called by Other Actions

As mentioned in section 33.1 Overview of Actions, one action can execute another in the same
file. The called action must be assigned a unique value of your choosing, e.g.,
ACTION=XYZ, and the calling action (or actions) must include one of the following functions
(shown for ACTION=XYZ):

exeActionRequired("xyz")

or

exeActionOptional("xyz")

These functions are described in sections 34.3.11 exeActionRequired and 34.3.10
exeActionOptional, respectively.

This technique is useful in cases where two different UPS operations require overlapping
functionality. For example, you may want one or more identical functions to be performed
when a product gets configured and when it gets declared as current. The following example
shows how to arrange this:

action = configure

 <functions for configure>

 exeActionRequired("common")

action = current

 <functions for current>

 exeActionRequired("common")

action = common

 <functions common to both configure and current>

Functions used in Actions 34-1

Chapter 34: Functions used in Actions

There is a set of supported functions that can be used in action stanzas. Actions are described
in Chapter 33: Actions and ACTION Keyword Values. In the present chapter we give a general
overview of functions, list and describe all the supported functions, provide a couple of
examples of functions within actions, and list all the read-only variables available to the
supported functions.

34.1 Overview of Functions

Table files and UPD configuration files often include actions. An action corresponds to a
command, usually a UPS command, and lists functions to perform in addition to the
command’s internal processes, when the command is executed. The supported functions are
listed and described in this chapter. A function has the format:

<function_name>([<argument_1>] [, <argument_2>] ... [<delimiter>])

The default delimiter is the colon (:).

For example, the function:

envPrepend(<VARIABLE>, <value>)

prepends the specified value to an existing environment variable, using the default delimiter.

Functions are not case-sensitive; e.g., envPrepend, envprepend, and ENVPREPEND
are all acceptable and equivalent. A function is specified in a shell-independent manner, but
contains enough information to allow it to be transformed into a sh or csh family command
(e.g., sourceRequired(), or execute()), or to be interpreted directly by UPS (e.g.,
writeCompileScript()).

34.2 Reversible Functions

In section 33.2.2 “Uncommands” as Keyword Values we discussed commands that have
corresponding “uncommands”. Usually, when the “uncommand” is run, the desired behavior
is to reverse all the functions that were performed when the original command was run. Many
of the supported functions are reversible, some are not.

34-2 Functions used in Actions

Wherever you plan to default the “uncommand” action (i.e., to specifically not include an
ACTION=UNCOMMAND stanza) and you want UPS to exactly reverse the
ACTION=COMMAND functions, make sure that you only include reversible functions under
ACTION=COMMAND. Reversible functions are identified as such in the descriptions in
section 34.3 Function Descriptions.

34.3 Function Descriptions

34.3.1 addAlias

Description

Add an alias (C shell family) or function (Bourne shell family). A %s in the <VALUE>
marks where the argument list should go. Reversible (runs unAlias).

Syntax

addAlias(<NAME>, <VALUE>)

Example 1

addAlias(askfor, ‘echo May I have some %s, please\?’)

Defines the alias askfor, which when run with an argument like cake, e.g.,:

% askfor cake

produces the response:

May I have some cake, please?

Example 2

addAlias(setup,'${UPS_SOURCE} `${UPS_PROD_DIR}/bin/ups setup %s`')

${UPS_SOURCE} is set to “.” or “source” depending on the shell, and %s is presumed
to stand for a product name. This defines the alias setup. When issued with a product
name, e.g.,

% setup upd

it sources the executable ${UPS_PROD_DIR}/bin/ups with the arguments setup and
upd.

Functions used in Actions 34-3

34.3.2 doDefaults

Description

Perform the default functions for the command corresponding to the specified action (only
SETUP and UNSETUP have default functions). If no action listed (e.g., doDefaults()),
then the action under which this function occurs is used. Reversible (runs doDefaults).

Note: If an ACTION corresponding to the given command is included in the file, the
command’s default functions will be executed only if doDefaults is specified underneath
it. If there is no ACTION for the command, and hence no doDefaults function listed, the
default functions will be executed when the command is issued.

Syntax

doDefaults([<ACTION>])

Example

doDefaults([SETUP])

Specifies that the default functions for the setup command will be run when the command
is issued. More typically, this is specified in the following manner:

ACTION=SETUP

 doDefaults()

34.3.3 envAppend

Description

Append <value> to existing environment variable. Reversible (runs envRemove).

It is better to append than prepend if you just want to provide a value in case one is not there.
If you want to override any existing value, you should prepend.

Note: Use the function pathAppend for $PATH.

Syntax

envAppend(<VARIABLE>, <value> [, <delimiter>])

Example

envAppend(PYTHONPATH, ${UPS_PROD_DIR}/lib)

Appends the value of ${UPS_PROD_DIR}/lib to the variable PYTHONPATH, using the
default delimiter.

34-4 Functions used in Actions

34.3.4 envPrepend

Description

Prepend <value> to existing environment variable. Reversible (runs envRemove).

It is better to prepend than append if you want to override any existing value. If you just want
to provide a value in case one is not there, you should append.

Note: Use the function pathPrepend for $PATH.

Syntax

envPrepend(<VARIABLE>, <value> [, <delimiter>])

Example

envPrepend(PYTHONPATH, ${UPS_PROD_DIR}/lib)

Prepends the value of ${UPS_PROD_DIR}/lib to the variable PYTHONPATH, using the
default delimiter.

34.3.5 envRemove

Description

Remove the string <value> from existing environment variable.

Note: Use the function pathRemove for $PATH.

Syntax

envRemove(<VARIABLE>, <value> [, <delimiter>])

Example

envRemove(PYTHONPATH, ${UPS_PROD_DIR}/lib)

Removes the value of ${UPS_PROD_DIR}/lib from the variable PYTHONPATH;
assumes the default delimiter.

Functions used in Actions 34-5

34.3.6 envSet

Description

Set a new environment variable. This is particularly useful for representing long strings.
Reversible (runs envUnset).

Note: Use the function pathSet for $PATH.

Syntax

envSet(<VARIABLE>, <value>)

Example

envSet(UPD_USERCODE_DIR, ${UPS_THIS_DB})

Sets ${UPD_USERCODE_DIR} (the local database used by UPD) to ${UPS_THIS_DB} (the
database in which the product is declared).

34.3.7 envSetIfNotSet

Description

Set a new environment variable, if not already set. This is particularly useful for representing
long strings.

Syntax

envSetIfNotSet(<VARIABLE>, <value>)

Example

envSetIfNotSet(HOST, ‘long_hostname‘)

If not already set, this sets the variable HOST to a long hostname.

34.3.8 envUnset

Description

Unset existing environment variable.

Syntax

envUnset(<VARIABLE>)

Example

envUnset(MYVAR)

Unsets the variable $MYVAR.

34-6 Functions used in Actions

34.3.9 exeAccess

Description

Check for access to specified existing executable through the $PATH. If executable is found
continue. If not found, exit with error.

Syntax

exeAccess(<executable>)

Example

exeAccess(gcc)

Ensures that a version of the product gcc is in your $PATH.

34.3.10 exeActionOptional

Description

Process the functions associated with the specified action for the same product instance. Do
not fail if the action doesn’t exist. Reversible.

Syntax

exeActionOptional("<newaction>")

Example

exeActionOptional("CONFIGURE")

Process the functions in CONFIGURE action. If no CONFIGURE action, processing
continues.

34.3.11 exeActionRequired

Description

Process the functions associated with the specified action for the same product instance. Fail if
it doesn’t exist. Reversible.

Syntax

exeActionRequired("<newaction>")

Example

exeActionRequired("CONFIGURE")

Process the functions in CONFIGURE action. If no CONFIGURE action, processing fails.

Functions used in Actions 34-7

34.3.12 execute

Description

Execute a shell-independent command and (optionally) assign the output to an environment
variable, <VARIABLE>.

The functions execute, sourceRequired, sourceReqCheck,
sourceOptional, and sourceOptCheck each take a required parameter
(UPS_ENV_FLAG) which indicates whether to define UPS local variables. This parameter
can take the following values:

UPS_ENV define all local UPS environment variables before sourcing (the
script or command relies on these being defined)

NO_UPS_ENV do not define the local UPS environment variables (the script or
command doesn’t use them)

If the optional third argument, <VARIABLE>, is not specified, then the specified command is
executed but the output from that command is not saved. This command does not have to be
shell-independent.

Syntax

execute("<command>", <UPS_ENV_FLAG>, [, <VARIABLE>])

Example

execute("echo Call final installation script for
${UPS_PROD_NAME} ${UPS_PROD_VERSION}", NO_UPS_ENV)

 (All on one line.) UPS echoes the given text and sources the current script for the
product.

34.3.13 fileTest

Description

Run a shell test on <file>, fail if <test> is not true (see man test).

Syntax

fileTest(<file>, <test> [, <errormessage>])

Example

fileTest(/, -w, "You must be root to run this command.")

This tests for write access in the root directory and returns the shown error message if the test
fails.

34-8 Functions used in Actions

34.3.14 pathAppend

Description

Append <value> to existing $PATH-like environment variable. Reversible (runs
pathRemove).

It is better to append than prepend if you just want to provide a value in case one is not there.
If you want to override any existing value, you should prepend.

Syntax

pathAppend(<VARIABLE>, <value> [, <delimiter>])

Example

pathAppend(PATH, ${UPS_PROD_DIR}/bin)

Appends the value ${UPS_PROD_DIR}/bin to the $PATH variable using the default
delimiter.

34.3.15 pathPrepend

Description

Prepend <value> to existing $PATH-like environment variable. Reversible (runs
pathRemove).

It is better to prepend than append if you want to override any existing value. If you just want
to provide a value in case one is not there, you should append.

Syntax

pathPrepend(<VARIABLE>, <value> [, <delimiter>])

Example

pathPrepend(PATH, ${UPS_PROD_DIR}/bin)

Prepends the value ${UPS_PROD_DIR}/bin to the $PATH variable using the default
delimiter.

Functions used in Actions 34-9

34.3.16 pathRemove

Description

Remove the string <value> from existing $PATH-like environment variable. Reversible
(runs pathAppend).

Syntax

pathRemove(<VARIABLE>, <value> [, <delimiter>])

Example

pathRemove(PATH, ${UPS_PROD_DIR}/bin)

Removes the value ${UPS_PROD_DIR}/bin from the $PATH variable.

34.3.17 pathSet

Description

Set a $PATH-like environment variable (in csh family, setting a $PATH is different than setting
other environment variables). No choice of delimiter offered. Reversible (runs envUnset).

If this gets set wrong, your $PATH could get deleted. (To recover from this problem, should it
occur, simply run setup setpath.)

Syntax

pathSet(<VARIABLE>, <value>)

Example

pathSet(PATH, /afs/fnal.gov/ups/<prod1/v1_0/SunOS+5/bin: ...)

Sets the $PATH to the value given (sample value truncated after first delimiter for brevity).

34.3.18 prodDir

Description

Set the $<PRODUCT>_DIR environment variable to the root directory of the product
instance. Reversible (runs unProdDir).

Syntax

prodDir()

34-10 Functions used in Actions

34.3.19 setupEnv

Description

Set the $SETUP_<PRODUCT> environment variable so that product can later be unsetup.
Reversible (runs unsetupEnv).

Syntax

setupEnv()

34.3.20 setupOptional

Description

Setup another UPS product as a dependency, do not fail if the product doesn’t exist.
Reversible (runs unsetupOptional).

Syntax

The syntax is similar to the command setup:

setupOptional("[<options>] <product> [<version>]")

Example

setupOptional("perl")

Setup the default instance of the product perl, if available. Do not fail if not found.

34.3.21 setupRequired

Description

Setup another UPS product as a dependency; fail if product not found. Reversible (runs
unsetupRequired).

Syntax

The syntax is similar to the command setup:

setupRequired("[<options>] <product> [<version>]")

Example

setupRequired("-j Info")

Setup the default instance of the product Info and no dependencies; fail if not available.

Functions used in Actions 34-11

34.3.22 sourceCompileOpt

Description

If <fileName> exists, then source it and skip remaining functions; otherwise just complete
the remaining functions. This is typically used in conjunction with
writeCompileScript; see section 34.3.33 writeCompileScript.

Syntax

sourceCompileOpt("<fileName>")

Example

sourceCompileOpt("/my/compile/script")

This sources the specified script which was created with writeCompileScript. If script
doesn’t exist, process continues.

34.3.23 sourceCompileReq

Description

Source <fileName> and skip all remaining functions; fail if file not found. This is
typically used in conjunction with writeCompileScript; see section 34.3.33
writeCompileScript.

Syntax

sourceCompileReq("<fileName>")

Example

sourceCompileReq("/my/compile/script")

This sources the specified script which was created with writeCompileScript. If script
doesn’t exist, process fails.

34-12 Functions used in Actions

34.3.24 sourceOptCheck

Description

Check if specified script exists and if so, source it and check return status for error. If error,
abort script and return. Reversible (runs sourceOptCheck on the “un” script, e.g.,
current and uncurrent).

The functions execute, sourceOptCheck, sourceOptional,
sourceReqCheck, and sourceRequired each take a required parameter
(UPS_ENV_FLAG) which indicates whether to define UPS local variables. This parameter
can take the following values:

UPS_ENV define all local UPS environment variables before sourcing (the
script or command relies on these being defined)

NO_UPS_ENV do not define the local UPS environment variables (the script or
command doesn’t use them)

The functions sourceOptCheck, sourceOptional, sourceReqCheck, and
sourceRequired each take an optional parameter (EXIT_FLAG). This parameter can
take the following values:

CONTINUE after sourcing the script, continue with the next function (the
default)

EXIT after sourcing the script, skip the rest of the functions

Syntax

sourceOptCheck(<SCRIPT>.${UPS_SHELL}, UPS_ENV_FLAG [,
EXIT_FLAG])

Example

sourceOptCheck(${UPS_UPS_DIR}/current.${UPS_SHELL}, UPS_ENV)

Check if ${UPS_UPS_DIR}/current exists. If so, first define all local UPS
environment variables, then source the script and check return status for error. If error, abort
script and return.

Functions used in Actions 34-13

34.3.25 sourceOptional

Description

Check if <SCRIPT> exists and if so, source it. If script not found, continue. Reversible
(runs sourceOptional on the “un” script, e.g., current and uncurrent).

See section 34.3.24 sourceOptCheck for information about the parameters UPS_ENV_FLAG
and EXIT_FLAG.

Syntax

sourceOptional(<SCRIPT>.${UPS_SHELL}, UPS_ENV_FLAG [,
EXIT_FLAG])

Example

sourceOptional(${UPS_UPS_DIR}/current.${UPS_SHELL}, UPS_ENV)

Check if ${UPS_UPS_DIR}/current exists. If so, first define all local UPS
environment variables, then source the script. If not, continue.

34.3.26 sourceReqCheck

Description

Source <SCRIPT> and check return status for error; fail if script not found. If error, abort
script and return. Reversible (runs sourceOptCheck on the “un” script, e.g., current
and uncurrent).

See section 34.3.24 sourceOptCheck for information about the parameters UPS_ENV_FLAG
and EXIT_FLAG.

Syntax

sourceReqCheck(<SCRIPT>.${UPS_SHELL}, UPS_ENV_FLAG [,
EXIT_FLAG])

Example

sourceReqCheck(${UPS_UPS_DIR}/current.${UPS_SHELL}, UPS_ENV)

Check if ${UPS_UPS_DIR}/current exists. If not, it will fail. If script exists, first
define all local UPS environment variables, then source the script and check return status for
error. If error, abort script and return.

34-14 Functions used in Actions

34.3.27 sourceRequired

Description

Source <SCRIPT>; fail if script not found. Return status not checked. Reversible (runs
sourceOptional on the “un” script, e.g., current and uncurrent).

See section 34.3.24 sourceOptCheck for information about the parameters UPS_ENV_FLAG
and EXIT_FLAG.

Syntax

sourceRequired(<SCRIPT>.${UPS_SHELL}, UPS_ENV_FLAG [,
EXIT_FLAG])

Example

sourceRequired(${UPS_UPS_DIR}/current.${UPS_SHELL}, UPS_ENV)

Check if ${UPS_UPS_DIR}/current exists. If not, it will fail. If script exists, first
define all local UPS environment variables, then source the script.

34.3.28 unAlias

Description

Remove alias/function of specified name.

Syntax

unAlias(<NAME>)

34.3.29 unProdDir

Description

Unsets the $<PRODUCT>_DIR environment variable. Reversible (runs prodDir).

Syntax

unProdDir()

Functions used in Actions 34-15

34.3.30 unsetupEnv

Description

Unsets the $SETUP_<PRODUCT> environment variable. Reversible (runs setupEnv).

Syntax

unsetupEnv()

34.3.31 unsetupOptional

Description

Runs unsetup on a product, does not fail if the product doesn’t exist or if it’s already
unsetup. Reversible (runs setupOptional).

Syntax

The syntax is similar to the command unsetup:

unsetupOptional("[<options>] <product> [<version>]")

For previously setup products, the only options that are recognized include -e, -j, and -v.

Example

unsetupOptional("perl")

Unsets the default instance of the product perl, if already setup. Does not fail if product
doesn’t exist or has already been unsetup.

34-16 Functions used in Actions

34.3.32 unsetupRequired

Description

Runs unsetup on a product; fails if product not found. Reversible (runs
setupRequired).

Syntax

The syntax is similar to the command unsetup:

unsetupRequired("<options>] <product> [<version>]")

For previously setup products, the only options that are recognized include -e, -j, and -v.

Example

unsetupRequired("perl")

Unsets the default instance of the product perl, if already setup. Fails if product doesn’t exist
or has already been unsetup.

34.3.33 writeCompileScript

Description

Write a file of compiled functions for the given ACTION keyword value. It actually writes
four files in total: <script>.[c]sh and un<script>.[c]sh.

The function writeCompileScript takes an optional parameter which can be one of the
following:

OLD if fileName exists, move the old one to fileName.old before creating the
new one.

DATE if fileName exists, move the old one to fileName.{datestamp} before
creating the new one.

Syntax

writeCompileScript("<fileName>", "<ACTION>" [, OLD|DATE])

Example

writeCompileScript("/my/compile/script", "SETUP", OLD)

This executes the SETUP action and writes the output of the functions to the specified script,
first saving the pre-existing script to /my/compile/script.old. This function knows
to ignore the function sourceCompileReq or sourceCompileOpt if it encounters
either at the top of the list of SETUP functions. See sections 34.3.22 sourceCompileOpt and
34.3.23 sourceCompileReq.

Functions used in Actions 34-17

34.4 Functions under Consideration for
Future Implementation

copyCatMan Will copy catman files from source directory specified in
table file by CATMAN_SOURCE_DIR to target directory
specified in the UPS database configuration file by
CATMAN_TARGET_DIR. Reversible (will run
uncopyCatMan)

copyHtml Will copy html files from source directory specified in
table file by HTML_SOURCE_DIR to target directory
specified in the UPS database configuration file by
HTML_TARGET_DIR.

copyInfo Will copy Info files from source directory specified in
table file by INFO_SOURCE_DIR to target directory
specified in the UPS database configuration file by
INFO_TARGET_DIR.

copyMan Will copy man files from source directory specified in
table file by MAN_SOURCE_DIR to target directory
specified in the UPS database configuration file by
MAN_TARGET_DIR. Reversible (will run
uncopyMan)

copyNews Will copy news files from source directory specified in
table file by NEWS_SOURCE_DIR to target directory
specified in the UPS database configuration file by
NEWS_TARGET_DIR.

else () Will begin an alternative branch

elseif (<condition>) Will proceed to another condition

endif () Will end a conditional branch

if (<condition>) Will begin a conditional branch

uncopyCatMan Will remove catman files from target directory specified in
the UPS database configuration file by
CATMAN_TARGET_DIR. Reversible (will run
copyCatMan)

uncopyMan Will remove man files from target directory specified in
the UPS database configuration file by
MAN_TARGET_DIR. Reversible (will run copyMan)

34-18 Functions used in Actions

34.5 Examples of Functions within Actions

34.5.1 A setup Action

This first example shows a setup action:

ACTION=SETUP

 prodDir()

 setupEnv()

 pathAppend(PATH, ${UPS_PROD_DIR}/bin)

 setupRequired("crow")

 setupOptional("gypsy")

When the product instance gets setup, UPS does five things in addition to setup’s internal
processes:

• sets the variable $<PRODUCT>_DIR to the product root directory

• sets the variable $SETUP_<PRODUCT> to identify the product instance for unsetup

• appends the product’s bin directory to the path

• sets up the product crow (and aborts the setup if a suitable current instance of crow is not
available)

• sets up the product gypsy, if found (setup proceeds whether or not a suitable current
instance of gypsy is available).

34.5.2 A “declare as current” Action

A second example illustrates steps for UPS to complete when the product instance is declared
as current to the database:

ACTION=CURRENT

 execute("echo Call final install script for ${UPS_PROD_NAME} ${UPS_PROD_VERSION}")

 sourceRequired(${UPS_UPS_DIR}/current, UPS_ENV)

UPS echoes the given text and sources the current script for the product.

34.6 Local Read-Only Variables Available to
Functions

The read-only variables listed below are set by UPS and available for use with the functions
described in section 34.3 Function Descriptions. In several functions, the flag
UPS_ENV_FLAG controls whether these variables get set (see section 34.3.24
sourceOptCheck).

These UPS variables do not get exported to the environment, but exist only for the duration of,
and in the context of, the processing of an action (actions are described in Chapter 33: Actions
and ACTION Keyword Values). By contrast, the environment variables $<PRODUCT>_DIR
and $SETUP_<PRODUCT> (described in section 22.1 setup under Environment Variables Set
by Default During setup), if defined, remain set and available for use as long as the product is
setup.1

Functions used in Actions 34-19

34.6.1 List of Current Read-Only Variables

When you use these variables, always enclose them in curly brackets ({}) as shown in the list.

1. The setup command and these variables are described in section 22.1 setup.

Local Read-Only Variable Description of Value

${PRODUCTS} Generally has the same value as the environment variable
$PRODUCTS. The difference is that (read-only) ${PROD-
UCTS} keeps the value set at the time UPS was invoked,
whereas (environment) $PRODUCTS may be reset.
You can reset $PRODUCTS (i.e., using the function
envSet (PRODUCTS, "<value>" in the table file) in
order to use a new value in the temp file; $PRODUCTS
won’t get overwritten by ${PRODUCTS} as the temp file
executes. See the example that follows this table.
Note that this is not valid for the other read-only variables in
this table; if you try to reset them (as environment vari-
ables), your values will get overwritten by the read-only
values as the temp file executes.

${UPS_COMPILE} Location and file name of a file containing compiled func-
tions (see Chapter 37: Use of Compile Scripts in Table
Files). It has the value of the combined keywords:
COMPILE_FILE_DIR/COMPILE_FILE

${UPS_EXTENDED} This set to 1 if the -e (extended) option was specified in
the setup command (see section 24.2.1 -e)

${UPS_OPTIONS} Option string that was passed with the -O (upper case o)
flag (see Chapter 24: Generic Command Option Descrip-
tions)

${UPS_ORIGIN} This specifies the location of the master source files.

${UPS_OS_FLAVOR} Operating system flavor as obtained from ups flavor

${UPS_PROD_DIR} Product instance root directory; same value as the environ-
ment variable $<PRODUCT>_DIR

${UPS_PROD_FLAVOR} Product flavor chosen during instance matching

${UPS_PROD_NAME} Product name as declared in the UPS database

${UPS_PROD_QUALIFIERS} Product qualifiers chosen during instance matching.
These are the qualifiers declared with the selected instance.
They are not necessarily the same set of qualifiers specified
on the command line via the -q option (the UPS matching
algorithm chooses the “best fit” based on the specified qual-
ifiers; not necessarily an exact match).

${UPS_PROD_VERSION} Product version as declared in the UPS database

${UPS_THIS_DB} Database in which this product instance is declared.

34-20 Functions used in Actions

$PRODUCTS vs. ${PRODUCTS}: Resetting $PRODUCTS

This example is intended to illustrate the interaction between the read-only variable
${PRODUCTS} and the environment variable $PRODUCTS. There are a couple of
potentially confusing points.

Let ${PRODUCTS} be set to /fnal/ups/db. Say in your table file you set $PRODUCTS
to /path/to/mydb in the SETUP action, like this:

ACTION=SETUP

 envSet(PRODUCTS, "/path/to/mydb:${PRODUCTS}")

Now ${PRODUCTS} and $PRODUCTS are different. The following execute functions
show the difference in the values. The function:

 execute("echo $PRODUCTS", NO_UPS_ENV)

would produce:

/path/to/mydb:/fnal/ups/db

whereas the same function using ${PRODUCTS}, e.g.,

 execute("echo ${PRODUCTS}", NO_UPS_ENV)

would produce only:

/fnal/ups/db

$PRODUCTS vs. ${PRODUCTS}: Effects on setup and ups depend

Another issue is the setup... functions. Say you have a product fred v1_0 declared in
/path/to/mydb (the database not included in ${PRODUCTS}). If you include a
setupRequired or setupOptional function later in the SETUP action, e.g.,:

ACTION=SETUP

 envSet(PRODUCTS, "/path/to/mydb:${PRODUCTS}")

 setupRequired(fred v1_0)

the setup will fail because these functions only reference the read-only variable
${PRODUCTS}, which in this case doesn’t include your product. You can get around this by
using the execute function to set the product up:

 execute ("setup fred v1_0", NO_UPS_ENV)

This function uses the environment variable $PRODUCTS.

Remember though, when you run a ups depend on a product, only products identified in
setupRequired or setupOptional functions get listed. You would not see fred
v1_0 listed in the ups depend output for the main product in our example.

${UPS_UPS_DIR} Path to the product instance’s ups directory

${UPS_VERBOSE} This is set to 1 if the -v (verbose) option was specified
(see Chapter 24: Generic Command Option Descriptions).

Local Read-Only Variable Description of Value

Functions used in Actions 34-21

34.6.2 Read-Only Variables under Consideration for the
Future

We plan to make the keyword values, listed in section 27.4 List of Supported Keywords,
available as read-only variables available to functions. The read-only variable corresponding
to a keyword will typically include “UPS_” prepended to it. E.g., the read-only variable
corresponding to the keyword DECLARED will be ${UPS_DECLARED}. Several of these
are already implemented in this way, e.g., ${UPS_PROD_DIR} corresponds to the keyword
PROD_DIR.

34-22 Functions used in Actions

Table Files 35-1

Chapter 35: Table Files

This chapter describes table files. Table files contain product-specific,
installation-independent information. Most, but not all, products require a table file. UPS
product developers are responsible for providing the table files associated with their products.

35.1 About Table Files

Table files are created and maintained by product developers. Table files contain the
non-system-specific and non-shell-specific information that UPS uses for installing,
initializing, and otherwise operating on product instances. For a given product, usually a
single table file suffices for several instances, especially of a single version. Sometimes each
instance has a separate table file. Table file names are arbitrary; we present recommendations
in section 35.3 Recommendations for Creating Table Files.

Typically, when a UPS command is issued, UPS finds the table location from the command
line or the version file (see section 28.4 Determination of ups Directory and Table File
Locations). The command completes its internal processes, and then within the table file, it
proceeds to:

1) locate the stanza that matches the specified product instance

2) find an ACTION keyword value that corresponds to the command, if any (see Chapter
33: Actions and ACTION Keyword Values)

3) execute the functions listed underneath the corresponding ACTION keyword, if any
(see Chapter 34: Functions used in Actions), or

4) reverse the functions listed underneath the ACTION corresponding to the
“uncommand” (see section 33.2.2 “Uncommands” as Keyword Values)

35.2 When Do You Need to Provide a Table
File?

Not all products require a table file. In particular, if no processing besides the internals and
defaults needs to be done for any UPS command run on a particular product, and if its ups
directory and documentation reside in the default areas, then the product doesn’t need a table

35-2 Table Files

file. However, for products that do need a table file (most), at least a rudimentary table file
must be in place before any instance is declared to a target UPS database. If it’s not added
right away, users may see incorrect behavior before it is there.

35.3 Recommendations for Creating Table
Files

• Although table files can have any file name, we recommend that they be named as
<product>.table (e.g., emacs.table) or <version>.table (e.g.,
v19_34b.table) for easy identification. If a table file is unique to a particular
version of the product (which is likely because versions of product dependencies often
change along with the version of the main product) then the name should be
<product>_<version>.table (e.g., emacs_v19_34b.table).

• Table files should not source any setup.[c]sh script unless flow control (if then
else, looping, etc.) is needed. For assistance, contact uas-group@fnal.gov.

• In most cases, “un” actions (e.g., UNSETUP, UNCURRENT) are not needed (see section
33.2.2 “Uncommands” as Keyword Values). If an “un” action is not specified in the
table file, UPS will undo what the corresponding action did (e.g., SETUP, CURRENT),
in reverse order, provided reversible functions were used (see section 34.2 Reversible
Functions).

• Individual groups or experiments at Fermilab may set standards regarding table files that
members should follow; contact your group leader to find out if there are any you need to
be aware of. For example, ODS prefers that table files be maintained in the UPS
database product subdirectory (e.g., $PRODUCTS/emacs) rather than in the product’s
ups directory.

35.4 Table File Structure and Contents

35.4.1 Basic Structure

The file starts with a header that identifies the file type and the product:

File=Table

Product=<product>

The basic structure of table file contents consists of an instance identifier followed by one or
more actions (described in Chapter 33: Actions and ACTION Keyword Values). By the time
UPS accesses the table file, it has already determined the database, product name and product
version. Therefore FLAVOR and QUALIFIERS together are sufficient to identify the
instance.

Table Files 35-3

Here is a sample table file that illustrates the basic structure:

File=Table

Product=exmh

FLAVOR=SunOS+5

QUALIFIERS=""

 ACTION=SETUP

 setupRequired(expect)

 setupRequired(mh)

 ...

 ACTION=UNSETUP

 ...

User-defined keywords, described in section 27.2 Keywords: Information Storage Format, can
also be included after an instance identifier for use within actions.

35.4.2 Grouping Information

When a single table file represents multiple instances, a grouping structure can be
superimposed on this basic structure to organize the information. To avoid having to repeat
identical actions for a series of FLAVOR/QUALIFIER identifiers, the keyword FLAVOR can
take the value ANY in table files. FLAVOR=ANY is taken as a best match, assuming all other
instance identifiers match (see Chapter 26: Product Instance Matching in UPS/UPD
Commands for more information on instance selection).

Grouping information within table files is supported via the use of the following three markers:

GROUP: Groups together multiple flavor/qualifier pairs. All entries
subsequent to GROUP: are part of this group until an END: marker
is found.

COMMON: Groups together actions that apply to all instances represented in
GROUP:. COMMON: is only valid within a GROUP:.

END: Marks the end of a GROUP: or COMMON:. One END: marker is
used to jointly end a GROUP: and an included COMMON:.

UPS does not require grouping in table files; these markers are available for convenience and
for organizing information clearly. However, if GROUP: or COMMON: is used, END: must
appear at the end of it, even if that is the very end of the file.

35.4.3 The Order of Elements

Blank lines are ignored, and therefore can be placed anywhere.

• The first keywords after GROUP: must always be FLAVOR followed by QUALIFIERS
(i.e., the instance identifiers).

• FLAVOR and QUALIFIERS cannot be included within a COMMON: grouping.

• User-defined keywords can be defined anywhere except between GROUP: and the
instance identifiers.

• Actions (described in Chapter 33: Actions and ACTION Keyword Values) for each
instance are located after the instance-identifying keywords, and often between a
COMMON: and END:.

35-4 Table Files

• All actions after COMMON: apply to all the FLAVOR-QUALIFIERS pairs listed above
it within the current GROUP:.

• All statements apply to the most recently defined FLAVOR/QUALIFIER keywords
except for the statements between COMMON: and END: (which apply to all the flavors
in the current GROUP:)

• GROUP:s cannot be nested.

35.5 Product Dependencies

35.5.1 Defining Dependencies

UPS product dependencies get listed in the SETUP action for the product instance in question.
The setupRequired and setupOptional functions, described in section 34.3
Function Descriptions, can be used within the SETUP action to setup the dependencies along
with the main product. These two functions take the same set of options and arguments as a
normal setup command (see section 22.1 setup) in order to clearly specify the desired
instance of the dependent product. We discourage specification of particular versions of
products, and recommend using chains instead, e.g.,:

ACTION=SETUP

 setupRequired("perl")

This example sets up the default instance of perl, chained to current. Using chains, it is easier
to keep the dependencies and the main product in sync.

Products that are not maintained in the UPS framework can also be designated as
dependencies. You would need to use the function exeAccess to locate and access a
non-UPS executable through your $PATH. For example, the action:

ACTION=SETUP

 setupOptional(gcc)

 exeAccess(gcc)

tells UPS to setup the current instance of gcc if there is one declared; the exeAccess
function checks for a version of gcc in your $PATH, even if it’s not one that is managed by
UPS, and exits with an error if one is not found.

35.5.2 Product Dependency Conflicts

When different dependencies include the same product via different dependency trees (and
therefore may require different instances of the same product), rules have been established to
determine which instance of the dependent product is selected and in which order the required
products are setup.

Table Files 35-5

Selection Algorithm for Conflicting Dependencies

The rules are as follows:

1) First level product dependencies, defined as those products listed as dependencies in the
table file of the main product instance, take precedence over lower level dependencies
when selecting which instance of the required product to set up.

2) Dependencies listed later in the table file take precedence over those listed earlier.

Example of Dependency Selection and Order of Setup

We’ll take you through an example that illustrates how the dependencies are selected and in
what order they are setup. Our sample dependency structure starts with the product A as the
parent product. It has two dependencies, which in turn have dependencies of their own. B
b1 refers to product B, version b1, and so on. (We recommend that developers avoid using
specific version dependencies in general; we use them in our example for illustrative
purposes.) Some of the dependencies are conflicting:

In A’s table file:

product A

setupRequired(B b1)

setupRequired(C c1)

In B b1’s table file:

product B b1

setupRequired(C c2)

setupRequired(D d1)

In C c2’s table file:

product C c2

setupRequired(D d3)

In C c1’s table file:

product C c1

setupRequired(D d2)

The tree is traversed starting at A, then going down each dependency branch. So the order in
which the products are encountered is:

1) A (no conflict)

2) A’s dependencies B b1 and C c1 are selected since they are the highest level
dependencies.

3) Start down B b1 branch: find C c2 (version c1 already selected by rule 1; C c2 ignored)

4) Completing the B b1 branch, find D d1. It is examined, and ultimately passed over (by
rule 2) because D d2, a dependency of C c1 and therefore also a second-level
dependency of A, is encountered later.

35-6 Table Files

35.6 Table File Examples

35.6.1 Example Illustrating Use of FLAVOR=ANY

Below is a sample table file for the product exmh version v1_6_6 which uses FLAVOR=ANY.
For the exmh instances whose version files point to this table file, all except those with
qualifiers share the same stanza:

File=Table

Product=exmh

#***

Starting Group definition

Group:

Flavor=ANY

Qualifiers=""

Common:

 Action=setup

 setupRequired(expect)

 setupRequired(mh)

 setupOptional(glimpse)

 setupOptional(www)

 setupOptional(mimetools)

 setupOptional(ispell)

 setupOptional(popclient)

 prodDir()

 setupEnv()

 pathPrepend(PATH,${UPS_PROD_DIR}/bin)

 Action=configure

 execute(${UPS_PROD_DIR}/ups/configure,UPS_ENV)

End:

Actions, functions and variables as used in this example are described in Chapter 33: Actions
and ACTION Keyword Values, section 34.3 Function Descriptions and section 34.6 Local
Read-Only Variables Available to Functions, respectively.

You’ll notice that there are no functions specified for unsetup in this table file. Due to the
defaults that UPS has in place, when unsetup is run all of the setup functions will be
reversed (the required products will get unsetup, the defined environment variables will get
undefined, and the product’s bin directory will be dropped from $PATH. See sections
33.2.2 “Uncommands” as Keyword Values and 34.2 Reversible Functions.

35.6.2 Example Showing Grouping

Grouping is illustrated in the following example:

FILE=Table

PRODUCT=exmh

#***

Starting Group definition

GROUP:

FLAVOR=IRIX+5

QUALIFIERS=""

FLAVOR=IRIX+5

QUALIFIERS="mips2"

Table Files 35-7

COMMON:

 ACTION=SETUP

 setupOptional(expect)

 ...

 ACTION=CONFIGURE

 execute(${UPS_PROD_DIR}/ups/configure,UPS_ENV)

 ...

END:

#***

Starting Group definition

GROUP:

FLAVOR=ANY

QUALIFIERS=""

COMMON:

 ACTION=SETUP

 setupRequired(expect)

 ...

 ACTION=CONFIGURE

 execute(${UPS_PROD_DIR}/ups/configure,UPS_ENV)

 ...

END:

The second group (defined by FLAVOR=ANY) matches all the instances not matched in the
first group, except those with qualifiers.

35.6.3 Example with User-Defined Keywords

User-defined keywords are described in section 27.2 Keywords: Information Storage Format.
All user-defined keywords must have underscore (_) as the initial character (e.g.,
_dest_arch). The following example illustrates their use in a table file:

File=Table

Product=vxboot

#***

Starting Group definition

Group:

Flavor=NULL

Qualifiers="narrow29"

 _dest_arch=ppc

 _dest_env=VxWorks-5.3

 _dest_type=MVME2301

...

Common:

 Action=setup

 setupEnv()

 envSet (VXB_DEST_ARCH,${_dest_arch})

 envSet (VXB_DEST_ENV,${_dest_env})

 envSet (VXB_DEST_TYPE,${_dest_type})

...

35-8 Table Files

35.6.4 Examples Illustrating ExeActionOpt Function

Example 1

In this example, there are actions for the first two instance identifiers, but not for the third. We
want to execute the XYZ action at setup time if it’s there, but continue processing if it’s not. To
do this, we must call the action using the exeActionOpt function.

FILE=Table

PRODUCT=fred

#***

Starting Group definition

GROUP:

FLAVOR=SunOS+6

QUALIFIERS=""

 ACTION=XYZ

 fileTest(/, -w, "You must be root to run this command.")

FLAVOR=IRIX+6

QUALIFIERS=""

 ACTION=XYZ

 fileTest(/, -w, "You must be root to run this command.")

FLAVOR=IRIX+6

QUALIFIERS="mips2"

No XYZ action

COMMON:

 ACTION=SETUP

 exeActionOpt(XYZ)

 END:

...

Example 2

In this example, we use the exeActionOpt function to instruct UPS to execute one action
or another, depending on whether the user supplies an option on the setup command line.

FILE=Table

PRODUCT=fred

#***

Starting Group definition

GROUP:

FLAVOR=ANY

QUALIFIERS=""

 ACTION=SETUP

 exeActionOpt(XYZ_${UPS_OPTIONS})

 ACTION=XYZ_

 function_1()

 ACTION=XYZ_FULL_LICENSE

 function_2()

...

Table Files 35-9

If you run:

% setup fred

you’ll execute ACTION XYZ_. To execute ACTION XYZ_FULL_LICENSE, you need to
run:

% setup fred -O FULL_LICENSE

35-10 Table Files

Scripts You May Need to Provide with a Product 36-1

Chapter 36: Scripts You May Need to Provide

with a Product

In UPS v4, the functions supported for use in table file actions will not always suffice for
completing certain tasks, for instance configuration and tailoring. You may still need to
provide executable scripts, and include appropriate functions in your table file to execute them.
In this chapter we discuss some scripts you may need to provide with your product.

Since these types of scripts generally get executed only once, speed isn’t critical. We plan to
provide more functions in later UPS releases so that scripts will no longer be necessary for this
purpose.

Note that these files can be binaries, but scripts are recommended.

36.1 configure and unconfigure

The configure executable must perform whatever steps are necessary to install the
product on a system, minus anything that requires direct interactive input from the installer. In
cases where the installer must supply some information, you can choose to use a tailor
script to collect data, and pass the values to the configure script to use.

The unconfigure executable must undo everything that configure does. UPS is
“smart” enough that if one of the functions sourceOptCheck, sourceOptional,
sourceReqCheck, or sourceRequired is used in the CONFIGURE action, when
ups unconfigure is run, UPS can find and source the
unconfigure.${UPS_SHELL} script.

Here is an example. Say a CONFIGURE action specifies:

ACTION=CONFIGURE

 sourceOptional(${UPS_UPS_DIR}/configure.${UPS_SHELL},UPS_ENV)

When you run the ups unconfigure command, UPS first looks for
ACTION=UNCONFIGURE, as usual. Failing to find it, UPS next looks for
ACTION=CONFIGURE. Upon encountering the sourceOptional function, it searches
for the file unconfigure.${UPS_SHELL} in the same directory (${UPS_UPS_DIR}),
and sources it.

36-2 Scripts You May Need to Provide with a Product

Sample Configure Script

The tex_files product has a good example of a configure/current script (they are
identical in this case):

 #!/bin/sh

 # "current" and "configure" for $TEX_FILES_DIR/ups/current

 case "$TEX_FILES_DIR" in

 /afs*)

 find $TEX_FILES_DIR/texmf/fonts/tmp -type d \

-exec fs setacl {} system:anyuser rlidkw \;

 ;;

 *)

 chmod -R 1777 $TEX_FILES_DIR/texmf/fonts/tmp

 ;;

 esac

The directory $TEX_FILES_DIR/texmf/fonts/tmp must be writable by anybody
using tex_files, in order that TeX can create the requested fonts on-the-fly from font metadata
files. (This way, rarely-used fonts can be generated as the document is created, and they don’t
need to be stored.) The script evaluates $TEX_FILES_DIR. If it begins with /afs, it runs
the appropriate AFS command to make the tmp area world-writable. If not, then it uses the
standard UNIX chmod. UPS does not yet have “if-then-else” capability within table files, so
we can't write these things into actions. The table file calls the scripts via the actions:

 action=configure

 prodDir()

 execute(${UPS_UPS_DIR}/configure,UPS_ENV)

 unprodDir()

 action=current

 prodDir()

 execute(${UPS_UPS_DIR}/current,UPS_ENV)

 unprodDir()

As described in section 33.5 Actions Called by Other Actions, one of the identical scripts could
have been eliminated and a common action could have been used in this way:

action=configure

 exeActionRequired("common")

action=current

 exeActionRequired("common")

action=common

 proddir()

 execute(${UPS_UPS_DIR}/configure,UPS_ENV)

 unprodDir()

Configure Scripts for Products with Hard-Coded Paths

As discussed in section 15.1.3 Third-Party Products Requiring a Hard-Coded Path, many
third-party products require a hard-coded path assigned when the product is built. Most of
these products come with configurable Makefiles thereby allowing you to choose the path.
The technical note TN0086 Use of "/usr/local/products" now deprecated, on-line at
http://www.fnal.gov/docs/TN/TN0086/tn0086.html, describes recommended
techniques for implementing these products. The third approach that it discusses involves
using the configure script to modify a trampoline executable. Please refer to TN0086 for
information.

Scripts You May Need to Provide with a Product 36-3

36.2 tailor

As discussed in section 3.6.2 Tailoring a Product, tailoring is the aspect of the product
implementation that requires input from the product installer (e.g., the location of hardware
devices for a software driver package, a specific area for log files, which node should run the
server, etc.). If your product requires any interactive input from the installer, you will need to
furnish a tailor executable for this purpose. Generally tailor files are scripts that ask
the installer a series of questions, and write the answers to a <node>.dat file which in turn
gets read by the configure, current, and/or start scripts.

Usually undoing the steps done via tailor require interactive input. However, if your
tailor steps are such that they can be undone via a script, go ahead and provide an untailor
script. When you run the ups untailor command (available via the unknown command
handler discussed in section 33.4 The “Unknown Command” Handler), UPS will execute
untailor, the same way as described for unconfigure in section 36.1 configure and
unconfigure.

It still may be best to avoid including anything in tailor that needs to be undone when the
product is removed and that requires input from a person. If tailor is used to collect
information and pass it to the configure script (recommended), then anything that needs
to be undone can be addressed in unconfigure.

For a sample tailor script, see $JUKE_DIR/ups/tailor.

36.3 current and uncurrent

Most things that need to be done when a product instance is declared current can be done
directly via functions in the table file in a CURRENT action. However, if the available
functions prove to be insufficient for your product, create a current script to perform the
function(s).

Likewise, when a current chain is removed from a product instance, the uncurrent script
(if it exists) should undo all the things that were done in current. It works the same way as
UNCONFIGURE, described in section 36.1 configure and unconfigure.

A sample current script is shown in section 36.1 configure and unconfigure.

36.4 start and stop

The start and stop files may be needed if your product needs to startup automatically at
boot time and run until system shutdown. Refer to Chapter 14: Automatic UPS Product
Startup and Shutdown for information on this topic. In the table file for this type of product
you must include the actions ACTION=START and ACTION=STOP. These actions must
include all the steps necessary to startup the product and shut it down. You may need to put
these steps in scripts and execute them from the table file. You can call the scripts whatever
you like, but we recommend start and stop for easy recognition.

36-4 Scripts You May Need to Provide with a Product

Sample start and stop Scripts

We’ll use scripts for juke v5_2 as examples.

The start script

#!/bin/sh

case "$0" in

/*) JUKE_DIR=`echo $0 | sed -e ‘s;/ups/start;;’`

 export JUKE_DIR

 PATH=$JUKE_DIR/bin:$PATH

 ;;

*) ;;

esac

cd $JUKE_DIR/log

host=`hostname`

local="`$JUKE_DIR/bin/juke show jukebox | grep $host | sed -e ‘s/@.*//’`"

if ["$local" != ""]

then

 if [-f $JUKE_DIR/log/jukerpcd.$host.pid]

 then

 # it looks like one is running

 if kill -0 `cat $JUKE_DIR/log/jukerpcd.$host.pid`

 then

 #daemon is already running, we’re done

 exit 0

 fi

 fi

 nohup $JUKE_DIR/bin/jukerpcd >> jukerpcd.$host.out 2>&1 </dev/null &

 echo $! > $JUKE_DIR/log/jukerpcd.$host.pid

 sleep 10 # wait for jukerpcd to wake up

 for i in $local

 do

 if ["`uname -s`" = "AIX"]

 then

 # AIX driver doesnt autoconfigure, so configure it

 dev=`$JUKE_DIR/bin/juke show jukebox |

 grep $local |

 sed -e ‘s;.*/dev/;;’ -e ‘s/[].*//’`

 mkdev -l $dev

 fi

 $JUKE_DIR/bin/juke online -j $i &

 done

fi

Scripts You May Need to Provide with a Product 36-5

The stop Script

#!/bin/sh

if ["" = "$JUKE_DIR"]

then

 JUKE_DIR=`echo $0 | sed -e ‘s;/ups/stop;;’`

 export JUKE_DIR

 PATH=$JUKE_DIR/bin:$PATH

fi

host=`hostname`

if [-f $JUKE_DIR/log/jukerpcd.$host.pid]

then

 kill -15 `cat $JUKE_DIR/log/jukerpcd.$host.pid`

 rm $JUKE_DIR/log/jukerpcd.$host.pid

fi

36-6 Scripts You May Need to Provide with a Product

Use of Compile Scripts in Table Files 37-1

Chapter 37: Use of Compile Scripts in Table

Files

Compile scripts can be used in table files to preprocess actions, thus speeding up considerably
the time it takes users to execute the actions. We describe the use of compile scripts in this
chapter.

37.1 Overview

Generally, when a UPS command is issued, if UPS finds a corresponding action in the product
instance’s table file, the listed functions get executed. If this function list is lengthy, the
command may take a long time to execute. To speed up execution in these cases, UPS v4
supports the preprocessing of actions in compile scripts. When you preprocess, you run the list
of functions once, store the output in a script, and then when the command is later executed,
the script is run instead of the functions.

This mechanism can be used for any UPS command, but it was developed with the setup
command in mind. If a setup command must setup many, many required products, reading
all the files for instance matching can be slow. By use of a compile script, the files can be read
once, instead of each time a user runs setup on the product.

37.2 Usage Information

The use of compile scripts is most easily explained using an example. The (partial) table file
below creates a compile script for the setup command when the product instance gets
configured. Alternatively, since ACTION=COMPILE is defined, you could manually run the
command ups compile to create the script. The functions listed are described in section
34.3 Function Descriptions:

ACTION=CONFIGURE

 exeActionRequired("COMPILE")

ACTION=COMPILE

 writeCompileScript("SETUP", "/my/compile/script")

ACTION=SETUP

 sourceCompileReq("/my/compile/script")

 doDefaults()

 setupRequired("dog v2_0")

 setupRequired("cat v1_1")

 ...long list...

 setupRequired("mouse v3_9")

37-2 Use of Compile Scripts in Table Files

This table file performs the following actions:

1) When the product instance is configured (via ACTION=CONFIGURE, which is
usually run as part of ups declare), the function
exeActionRequired("COMPILE") runs the functions under
ACTION=COMPILE.

2) The function writeCompileScript("SETUP",
"/my/compile/script") under ACTION=COMPILE executes a single
operation: run setup, and write the output of the setup actions to the script
/my/compile/script. This writeCompileScript function executes all the
functions under ACTION=SETUP except the first one (writeCompileScript
knows to ignore sourceCompileReq), and outputs the results to the script
my/compile/script. For example, for each setupRequired line, it
completes all the instance matching, and outputs the matched instance to the script.

Later, when setup is run by a user, the first function under ACTION=SETUP is executed
(sourceCompileReq ("my/compile/script")), and the remaining functions are
ignored. Therefore, none of the file reads have to occur during normal product setup.

The compiled script will contain hard-coded paths to the instances that were in effect when the
script was created. If any product version, root directory or table file changes, the script must
be recompiled for setup to work properly. Use ups depend to determine what the
current dependencies are.

Creating and Formatting Man Pages 38-1

Chapter 38: Creating and Formatting Man

Pages

In this chapter we show you how to create man pages, format them, and even create html
documents from them. This is not a comprehensive man page reference, but it contains
sufficient information for most purposes.

For further information, from the UNIX Resources Web page, see “How to Create Man
Pages” under Software Development.

First, a few notes:

• The man pages for a UPS product can go anywhere, as long as the location is specified in
the table file. A recommended location is ${UPS_PROD_DIR}/man for the
formatted pages and ${UPS_PROD_DIR}/catman for the unformatted pages. The
UPS backwards-compatible default, however, is ${UPS_UPS_DIR}/toman/man
for the formatted pages and ${UPS_UPS_DIR}/toman/catman for the
unformatted pages.

• Man page file names should consist of the product name, a period, and the section
number as described in the following note. This applies to both formatted and
unformatted files, which are distinguished by residing in separate directories.

• Man pages for commands are generally maintained as section 1, and library and system
calls as section 3. The section number should appear as an extension of the man page
file name (e.g., hello.1 for the command hello). Here is a full listing of categories
by section:

1 user commands

2 system calls

3 C library functions (on some platforms 3c for C, 3f for FORTRAN, etc.)

4 devices and network interfaces

5 file formats

6 games and demos

7 environments, tables, and troff macros

8 maintenance commands

9 x window system

l local commands

n new commands (tcl and tk use this)

• We recommend using either of the utilities nroff or groff with the -man option to
format your man pages in a standard way. These utilities are documented in many
standard UNIX texts, and you can also find man pages for them.

38-2 Creating and Formatting Man Pages

38.1 Creating the Source Document (Unfor-
matted)

38.1.1 Source File Format

We recommend writing man pages in the source form using simple macros from the nroff
macro package -man. Most of these macros require a dot (.) in the first column. The
following list of macros is sufficient for writing standard man pages:

.TH <name> <section> <date>

Title Heading; specify product name, man page section (usually
1), and date, in this order, to produce a man page format of this
type:

.SH "<text>" Section Heading; if no blanks in text, quotes are not needed.

.SS "<text>" Subsection Heading; if no blanks in text, quotes are not needed.

.P Paragraph break

.IP "<item>" Starts an indented paragraph where “item” is put to the left of it; if no
blanks in “item”, quotes are not needed.

.HP Starts a paragraph with a hanging indent; i.e. lines after the first are
indented

.RE Defines an indented region

.B "<text>" Bold; if no blanks in text, quotes are not needed.

.I "<text>" Italic; this shows up as underlined on most terminals. If no blanks
in text, quotes are not needed.

.TP <columns> Term/paragraph format; columns specify how many columns to
allocate to the term column. As an example, this input:

name (section) name (section)

...man page text...

 date page number

.TP 5

f1

is one option

.TP

f2

is another option

Creating and Formatting Man Pages 38-3

produces this output under nroff -man:

where “is” starts in column 6. Notice that the first .TP sets the
column value of the term, and the second one picks it up.

.P New paragraph

.br Break line

.nf Nofill (used to suppress normal line filling; used for preformatted
text)

.fi Fill (used to resume normal line filling, usually after a .nf)

./" Comment line

38.1.2 Man Page Information Categories

Categories of information that you may want to include as section headings (.SH) are:

NAME
This should be the product name followed by a short description. The text on this line is
also used as the keyword list for man -k and apropos.

SYNOPSIS or SYNTAX
Document here the complete syntax of the command used to invoke the product.

AVAILABILITY
Document here the OS flavors for which the program is available.

DESCRIPTION
Document here a full but succinct description of the use of the product.

OPTIONS
Document here all the options available for the invoking command.

EXAMPLES
Document here situations in which the program can be used, if there are uses that are not
obvious.

NOTES
Document here any information the user should be aware of when using the command.

MESSAGES AND EXIT CALLS
Document here all errors and other messages returned to the user. Include the cause and
the recovery actions whenever appropriate and possible.

AUTHOR
Document here the product coordinator and/or the major developers and contributors,
along with their particular areas of expertise, as appropriate.

HISTORY
Document here the significant changes in each release of the product.

 f1 is one option

 f2 is another option

38-4 Creating and Formatting Man Pages

RESOURCES
If your product is designed to work under X windows, document here any X resources that
affect the product’s behavior.

FILES
Document here all files, or at least their directories if there are too many files. Also
mention here any files in the user’s home area that are needed/accessed (e.g.,
$HOME/.mh_profile, $HOME/Mail/components for the mh and exmh
products).

BUGS
Document here things that do not (yet!) work as designed. Provide work-arounds
whenever possible.

CAVEATS
Document here things that work as designed but which may be unclear or surprising to the
user. (This is the System V replacement for the BUGS category; you too can pretend your
product has no bugs!)

SEE ALSO
Document here other related commands and manual sections, especially if not obvious.

38.1.3 Example Source File

In section 16.1.5 we presented a simple example for the product hello showing how to create a
formatted man page from a simple unformatted nroff input file. We will expand upon it here
to illustrate the macros listed above. The nroff source is created in
$HELLO_DIR/man/hello.1. Sample contents:

.TH HELLO 1 LOCAL

.SH NAME

hello - print "Hello world" on stdout

.SH SYNOPSIS

.B hello [options]

.I option option

.B ["

.I -yy -zz

.B ..."]

.SH AVAILABILITY

All UNIX flavors

.SH DESCRIPTION

hello prints the string "Hello world" on standard output.

.SH OPTIONS

There are no options, but we’ll make some up.

.TP 5

-yy

is one option

.TP

-zz

is another option

.SH AUTHOR

U. R. Friendly

Creating and Formatting Man Pages 38-5

38.2 Formatting the Source File

38.2.1 nroff

To create an ascii-formatted man page, you can run the utility nroff with the -man macro
package as follows:

% nroff -man <input_file> > <output_file>

We recommend following the prescription for unformatted and formatted man page locations
as stated above and in section 15.3. This ensures that the source file always gets run through
the formatter and the formatted file is never run through it again, which would produce odd
results. First, cd to the source file directory:

% cd $HELLO_DIR/man

The following command creates the formatted man page for our hello example in the correct
directory:

% nroff -man hello.1 > ../catman/hello.1

Once it is formatted, the example above will look like this:

HELLO(1) HELLO(1)

NAME

 hello - print "Hello world" on stdout

SYNOPSIS

 hello [options] option option [" -yy -zz ..."]

AVAILABILITY

 All UNIX flavors

DESCRIPTION

 hello prints the string "Hello world" on standard output.

OPTIONS

 There are no options, but we’ll make some up.

 -yy is one option

 -zz is another option

AUTHOR

 U. R. Friendly

 LOCAL 1

38-6 Creating and Formatting Man Pages

38.2.2 groff

You can also use groff to format your man page source file. You must setup groff before use
(not necessary for nroff). The command:

% groff -man -Tascii <input_file> > <ascii_output_file>

produces ascii-formatted man pages (the same output as the nroff command above). If you
want to produce a PostScript output file, enter:

% groff -man <input_file> > <ps_output_file>

38.3 Converting your Man Page to html For-
mat

An ascii-formatted man page can be run through the utility man2html and then accessed via a
Web browser. First setup conv2html, then run the command:

% man2html -title ’<manpage_title>’ < <ascii_output_file> >\
<html_file>

Glossary GLO-1

Glossary

This glossary defines terminology as it is used in the context of UPS and UPD v4.

action
Also called a UPS action. Actions are used in table files to group together functions that
UPS must perform when a particular command is issued. An action consists of an
ACTION=VALUE keyword (e.g., ACTION=SETUP) plus any functions listed under-
neath it.

active product instance
The product instance that is currently setup. The active instance may be different than the
current instance.

archive UPS database
A UPS database on a product distribution node in which the UPS product instances are
stored in archive format (e.g., tar, gzip), available for downloading to a user node. Also
called a distribution database.

bootstrap
(In this manual, we discuss bootstrapping the CoreFUE product, which includes UPS,
UPD and perl.) Install UPS/UPD on a machine on which no prior versions of these prod-
ucts are installed.

build
The process by which a distributable instance of a software product is constructed. The
build procedure results in a unique combination of product name, version, flavor, and
qualifiers. The actual process varies by product and by developer. It can simply consist of
a set of copy commands, or be as sophisticated as generation of executables from a master
source library of the software.

chain
A chain is a UPS database entry (in a chain file) that points to a declared product instance,
tagging the product instance according to its release status (e.g., current, test). Chains
allow users to specify the version of a product according to its status, rather than by its
version number. The defined chain names are: current, test, development, new, and old.
Their corresponding options (or flags) used in commands are: -c, -t, -d, -n, -o.
The -g <chainName> option allows definition of an arbitrary chain name.

Chains are set by the ups declare command; hence the term declare a product
instance as current.

chain file
Chain files reside in the product-specific directory under the UPS database directory, and
maintain the chain information. Chain files are named according to the chain name, and
end with .chain, e.g., current.chain. A chain file’s contents is simply the list of
the product instances (specified via sets of keyword/value pairs) that have been declared
with that chain.

GLO-2 Glossary

cluster
For the purposes of this document, a cluster is set of CPU nodes which share one or more
UPS databases and product areas. Generally the nodes of a cluster also share (at least)
login areas.

configure a product instance
For any product instance that requires configuration, an ACTION=CONFIGURE line is
provided in its table file, with functions listed beneath it. In UPS configuring a product
instance means executing these functions by issuing the ups configure command
with appropriate options. This happens by default when a product is declared, otherwise it
can be run manually. The functions perform all the configuration needed for the product
to run, minus that which requires input from the installer (see tailor a product instance and
INSTALL_NOTE for that portion).

coreFUE
A bundle of UPS, UPD and perl, the core pieces of the Fermi UNIX Environment.

current instance (of a product)
A product instance that is declared as current in the database (i.e., to which the chain “cur-
rent” points). The current instance of a product is the default for UPS and UPD com-
mands when no version or chain is specified. For a given product, there may be one
current instance each for several flavor/qualifier pairs.

daemon process
A background process that is configured to start up automatically on a system at boot time
and to stop at shutdown.

database
See UPS database.

database configuration file
The UPS database configuration file contains system-specific information that customizes
the UPS installation on a node or cluster. If it exists, it must reside under the database
directory in the file /path/to/ups_database/.upsfiles/dbconfig.

declare a product instance to UPS
The ups declare command makes a product instance known to the UPS database
and accessible by UPS. Declaration does not by itself make the product instance usable
since any product requirements (and often other conditions) must also be satisfied, but
declaring the product instance is a prerequisite for use (unless you’re using UPS products
without a database).

declare a product instance current
Declaring a product instance as “current” essentially tags it as the default instance (when
its flavor/qualifiers are matched). The declaration creates a current chain file or chain file
entry that points to the version file for the instance. Product instances can also be declared
as test, development, new or old, or as a user-defined chain for easy access.

declared product instance
An instance of a product which has been declared to a UPS database.

default function
The functions (as listed in section 34.3 Function Descriptions) that a UPS command com-
pletes (in addition to its internal processes) if no corresponding ACTION=COMMAND
keyword line is found in the matched table file, or if the function doDe-
faults([<ACTION>]) is listed under the corresponding ACTION=COMMAND
keyword line. Only the commands setup and unsetup actually have default func-
tions.

Glossary GLO-3

dependencies
Additional products that must be installed, declared, and setup to ensure the successful
operation of a given product or to enable special features within it. When a product
instance is setup, its dependencies also get setup by default.

distribution database
A UPS database in which UPS product instances are available for distribution to user
nodes. A distribution database may be in archive or live format. The default distribution
database at Fermilab is KITS which is maintained by the Computing Division on the
node fnkits.fnal.gov.

distribution node
This term is used in UPD to refer to the node on which UPS products are stored and avail-
able for distribution to user nodes. A distribution node contains a distribution UPS data-
base (can be live or archive) and a distribution products area, and runs UPS, UPD, a Web
server and an FTP server (preferably WU-FTP). It is sometimes called a server node.

It is possible to maintain a distribution database on one machine running UPS and UPD
and a Web server, and maintain the corresponding distribution products area(s) on a differ-
ent one running an FTP server, if the machines share a file system.

end user
Anyone who uses UPS products, but does not install, update, maintain, or develop them.

FermiTools
FermiTools are Fermilab-developed software packages that are believed to have general
value to other application domains, and thus have been made publicly available in a spe-
cial subdirectory of KITS via anonymous FTP and www. They do not require UPS.
Installation and use instructions come with each product.

Fermi UNIX Environment (FUE)
FUE started as a project for providing a cross-department, cross-division structure for the
proposal, discussion, design and implementation of all things that affect the user when
operating in a UNIX environment at Fermilab. Currently it consists of scripts and pro-
grams that form a uniform UNIX environment, standards documents, and the UPS suite of
tools (see http://www.fnal.gov/cd/FUE/).

flavor
To indicate the operating system (OS) dependency of a product instance, we use the term
flavor. This extra term allows us to differentiate by operating system, and optionally OS
version, while maintaining the same product name and version number for separate
instances. Some products do not require customizing for the different operating systems
(typically those without compiled code), but most do and therefore come in several fla-
vors.

flavor table
A list of a machine’s flavor including every level of specificity that you could use to find
or declare a product instance. For example, on a SunOS+5.6 machine, the complete flavor
table reads:

 SunOS+5.6

 SunOS+5

 SunOS

 NULL

 ANY

FTP server node
As regards UPD, this node contains UPS product instances (and files associated with
them) that may be downloaded to a user node, and it runs an FTP server. Usually it is the
same node as the Web server node, and called simply the server node or the distribution
node.

GLO-4 Glossary

FUE
See Fermi UNIX Environment.

fullFUE
A bundle of coreFUE plus the pieces which are strongly recommended for on-site sys-
tems: systools, shells and futil.

function
A UPS-defined entity used in table files that executes an operation within an action. The
supported functions are listed in section 34.3 Function Descriptions. One or more func-
tions always follow an ACTION=VALUE keyword line.

A function is specified in a shell-independent manner, but contains enough information to
allow it to be transformed into a sh or csh family command (e.g., sourceRe-
quired(), or execute()), or to be interpreted directly by UPS (e.g., writeCom-
pileScript()).

install a product instance
Copy a product instance to a local system from another location (usually from a distribu-
tion node) and perform the necessary steps to make it work.

INSTALL_NOTE
A file that describes procedures that the installer must perform manually to complete the
installation of a product. This file is provided by the product developer as needed.

instance
See product instance.

internal processes (or internals)
The set of processes that a UPS command completes, regardless of the contents of the
product instance’s table file. The internal processes are driven by the command line
parameters and options, and relevant environment variables.

keyword
Keywords are used in the UPS database files. They are essentially parameters to which
values must be assigned. The supported set of keywords listed in section 27.4 List of Sup-
ported Keywords collectively contains the information UPS requires for managing a UPS
installation and all its UPS products. Some of the keywords can be used in all the UPS
product management file types, others are restricted to certain file types.

keyword value
The value assigned to a keyword in one of the UPS database files.

KITS
The name of the UPS product distribution database on the central product distribution
node at Fermilab, fnkits.fnal.gov. The location of the KITS database is /ftp/upsdb.
UPS products are stored in the corresponding product area, /ftp/products (sym-
linked to /ftp/KITS), as tar files, generally. UPD commands access the KITS data-
base and products area by default.

live UPS database
A UPS database in which the UPS product instances are unwound, i.e., not stored in
archived format (e.g., tar, gzip).

local UPS database
A live UPS database on a local node. For user nodes, a database in which UPS product
instances are declared and available to be accessed and used.

local user node
See user node.

Glossary GLO-5

make
The UNIX make utility is a tool for organizing and facilitating the update of executables
or other files which are built from one or more constituent files. See UNIX at Fermilab or
a standard UNIX reference text for more information.

Makefile
First, see make above. A Makefile is a blueprint that you design and that make uses to
create or update one or more target files (usually executables) based on the most recent
modify dates of the constituent files. See UNIX at Fermilab or a standard UNIX reference
text for more information.

operating system (OS)
A control program for a computer that allocates computer resources, schedules tasks and
provides the user with a way to access the resources. See document DR0010 in the Com-
puting Division Web pages for the latest information on supported UNIX operating sys-
tems at Fermilab.

operating system version (OS version)
Like other software, an operating system gets fixed and enhanced periodically, and is
released by the vendor with a new version number (e.g., IRIX 5.1, IRIX 5.2). Sometimes
UPS products must be changed to continue to work properly under a new operating sys-
tem version.

operating system type (OS type)
The name of the basic operating system, without release number, as returned by the com-
mand ups flavor -2 (for example IRIX or SunOS).

overlay
An overlaid product gets distributed and maintained in the product root directory of its
main product. The set of products overlaid on a main product is collectively referred to as
the overlay.

parent product
A dependency’s parent product is that for which it is a dependency. A product may have
multiple parent products.

platform
Platform technically refers to the machine type (hardware) of a computer system. How-
ever, since until quite recently in the UNIX world there has been a near-perfect correspon-
dence between hardware platform and OS type (e.g., Digital Alphastations run OSF1),
sometimes platform is used loosely to refer to the OS type. This correspondence is chang-
ing as Linux can be run on PC, Digital, Sun and IBM hardware.

process an action
UPS converts the shell-independent functions listed underneath an ACTION keyword line
in a table file into code appropriate to the shell, and writes the output to a temporary file.
This is call processing an action.

product
See UPS product

product developer
A person who develops and maintains software products, and makes them available for
distribution by installing and declaring them to the KITS or other distribution database.
Sometimes called a product maintainer.

product installer
A person who downloads UPS products from a distribution node (through UPD, UPP or
FTP), installs them on a local system, and declares them to a local UPS database (often
the local system administrator acts as the product installer).

GLO-6 Glossary

product instance
The term product instance, or just instance, is used to represent a copy of a product,
namely a unique combination of product name, version, flavor and qualifiers within a
UPS database. For a given product, multiple instances may exist in the database to allow
users a choice of version and/or flavor/qualifier pair. A product instance may be chained;
hence the term “the current instance of a product”.

product name
The name of a UPS product as it appears in its UPS database files.

product root directory
The directory in which a product instance (i.e. its executables) and (optionally) its associ-
ated files reside. The product instance generally has a directory structure of its own, start-
ing at this root directory. Each instance of a product has a separate product root directory.

product user
See end user.

product version
The net result of any change to an existing product is that a new version of the product is
created; it is still the same product, but it will usually run a little differently. The versions
of a product are tracked by version numbers, e.g., v1_0, v1_1, etc. UPS allows for multi-
ple versions of a given product to be accessible concurrently to end users.

PRODUCTS (or $PRODUCTS)
The environment variable that points to the UPS database(s) on your system. If multiple
UPS databases exist, $PRODUCTS can be reset in your login files to a colon-separated
list of databases.

<PRODUCT>_DIR (or $<PRODUCT>_DIR)
PRODUCT here is the name of a product in upper case (e.g., EMACS_DIR). This is the
environment variable that points to the product root directory of the active instance of a
particular product; it gets set when the setup command is run.

qualifier
The product developer may include information about options used at compilation time
(e.g., debug or optimized) or other qualifying information for easy identification of
special compilations. This information is declared in the form of qualifiers. Qualifiers,
when present, are part of the unique instance identification along with product name, ver-
sion and flavor.

read-only variable
UPS sets several read-only variables that can be used in functions in table files. Many of
them correspond to keywords set in the UPS configuration file. There is another set of
read-only variables available for use in setting location definitions in the UPD configura-
tion file.

root directory for product
See product root directory.

setup
Each installed, declared UPS product instance requires that the setup command be
issued prior to use (unless it is a dependency of one that is already setup). setup per-
forms the necessary operations in your login environment to make an installed, declared
product accessible to you. Typically, the operations include modifying environment vari-
ables or adding to your $PATH. Any dependencies defined for the product get setup by
default at the same time.

Glossary GLO-7

table file
Table files contain non-system-specific and non-shell-specific information that UPS uses
for installing, initializing, and otherwise operating on product instances. That is, informa-
tion pertinent to one or more product instances, independent of the installation machine.
Table files are provided by the product developer as needed.

tailor a product instance
Tailoring is the aspect of the product implementation that requires input from the product
installer (e.g., specifying the location of hardware devices for a software driver package).
If the product requires tailoring, a file is usually supplied in the format of an interactive
executable (script or compiled binary), and it is run by issuing the ups tailor com-
mand with appropriate options. To tailor a product instance means to run this action, and
hence, run the file.

tar
The tar (tape archive) utility can create, add to, list, and retrieve files from an archive file.

tar file
A tar file is in archived format, and must be unwound for use. UPS products are generally
stored in KITS as tar files.

unknown command handler
A UPS feature that allows user-defined actions (e.g., ACTION=XYZ followed by
UPS-supported functions) in table files that can be run via a corresponding UPS-style
command (e.g., ups xyz [<options>] <product> [<version>])

unsetup
unsetup generally undoes the changes to the user’s software environment made by
setup in order to make the product no longer available for use. Any dependencies get
deactivated automatically at the same time by default.

UPD - Unix Product Distribution
A companion product to UPS which provides the functionality for uploading/download-
ing products between local systems and product distribution servers.

UPD commands
Any of the commands supported by UPD. They are listed and described in Chapter 23:
UPD/UPP Command Reference. These include commands to retrieve UPS products or
certain individual files or directories from a distribution database, and commands to man-
age products within a distribution database.

UPP - Unix Product Poll
A layer on top of UPD that allows a client to request notification of changes in a distribu-
tion node database and to download pre-specified products. UPP can be automated. This
is a useful tool for keeping abreast of changes/enhancements to your favorite products.

UPS - Unix Product Support
UNIX Product Support (UPS) is a software support toolkit which provides a methodology
for creating/managing all the UNIX products provided and/or supported by the Comput-
ing Division, and a uniform interface for accessing these products. UPS is itself a product
that must be installed on any machine that will be used to run other UPS products.

UPS has two parts: one or more databases which function as a central repository of infor-
mation about the products, and a set of procedures/programs to manipulate the data-
base(s).

UPS action
See action.

UPS commands
Any of the commands supported by UPS to manage products in a UPS environment.
They are listed and described in section Chapter 22: UPS Command Reference.

GLO-8 Glossary

UPS database
A directory that functions as a repository of information about all the installed, accessible
UPS product instances on a system. UPS allows multiple installed and declared instances
of each product. The database contains files for each product which store pointers to and
information about the declared instances of the product.

ups directory (or ups subdirectory)
A directory that may contain miscellaneous important files for a product instance; e.g., its
table file, scripts that the table file needs to execute, and so on. This directory may reside
anywhere; it often resides directly under the product instance’s root directory. Not all
products have ups directories.

UPS product
Software products distributed and managed by the UPS system are called UPS products.
UPS products include Fermilab-written programs, a wide range of public domain soft-
ware, and a host of third party licensed (proprietary) products. UPS products are available
for distribution in the KITS database on fnkits.fnal.gov.

user node
A node from which users can run UPS products; usually contains a live local UPS data-
base and locally-installed products.

version
For a product see product version; for an operating system see operating system version.

version file
A version file contains system-specific information for each instance of a UPS product.
One version file must exist in the product-specific directory under the UPS database direc-
tory for each version of a product that is declared to the UPS database. The name of the
version file is the version number followed by .version, e.g., v2_2.version.

Web server node
As regards UPD, this node contains one or more distribution databases and runs a Web
server, and coreFUE. Usually it is the same node as the FTP server node, and called sim-
ply the server node or the distribution node.

Index IDX-1

Index

Symbols

"-?" option 2-1, 10-1
+ argument for -K option 2-3
.updfiles directory 1-6
.upsfiles directory 1-6
/etc/init.d directory 14-5
/etc/rc*.d directories 14-5
/usr/local/ area

Fermilab policy regarding use of 15-2, 15-3
@ symbol 27-8

use with keywords 22-46
_UPD_OVERLAY keyword 16-7, 27-11

description 27-8

Variables

$<PRODUCT>_DIR variable 34-18
as set during setup 22-5
description 22-5

${DASH_PROD_FLAVOR} read-only variable 31-4
${DASH_PROD_QUALIFIERS} read-only variable 31-5
${PROD_DIR_PREFIX} read-only variable 31-5
${PRODUCTS} read-only variable

comparison to PRODUCTS env variable 34-19
description 34-19

${SUFFIX} read-only variable 31-5
${UPD_USERCODE_DB} read-only variable 3-4
${UPD_USERCODE_DIR} read-only variable 3-4
${UPS_BASE_FLAVOR} read-only variable 31-4
${UPS_COMPILE} read-only variable

description 34-19
${UPS_EXTENDED} read-only variable

description 34-19
${UPS_OPTIONS} read-only variable

description 34-19
${UPS_ORIGIN} read-only variable

description 34-19
${UPS_OS_FLAVOR} read-only variable

description 34-19
${UPS_PROD_DIR} read-only variable

description 34-19
${UPS_PROD_FLAVOR} read-only variable 31-4

description 34-19
${UPS_PROD_NAME} read-only variable 31-4

description 34-19
${UPS_PROD_QUALIFIERS} read-only variable 31-4

description 34-19

${UPS_PROD_VERSION} read-only variable
description 34-19

${UPS_THIS_DB} read-only variable
description 34-19

${UPS_UPS_DIR} read-only variable
description 34-20

${UPS_USERCODE_DB} read-only variable 31-4
${UPS_USERCODE_DIR} read-only variable 31-4
${UPS_VERBOSE} read-only variable

description 34-20
$PATH variable 1-10, 2-10, 22-11
$PRODUCTS variable 1-6, 1-10, 25-4

as used in UPD commands 26-1
as used in upd install 5-2
comparison to read-only ${PRODUCTS} 34-19
for multiple databases 25-2
use in database selection 26-1
use with private database 11-9
with AFS database 12-4

$SETUP_<DIR> variable 34-18
as set during setup 22-5

$SETUP_<PRODUCT> variable
description 22-5
use with unsetup command 22-6, 22-11

$SETUP_UPS variable 1-10
$TEMPDIR variable

use with upd addproduct 17-1, 23-7
$UPS_DIR variable 1-10
$UPS_EXTENDED variable

as set by -e option 24-2
$UPS_EXTRA_DIR variable 12-5
$UPS_OPTIONS variable

as set by -O option 24-4
$UPS_SHELL variable 1-10

"@" Keywords

@COMPILE_FILE keyword 22-47, 27-9
@PROD_DIR keyword 22-48, 27-9
@TABLE_FILE keyword 22-48, 27-10
@UPS_DIR keyword 22-48, 27-11

A

access.conf file 20-11
accessing a UPS product 2-8, 22-5

IDX-2 Index

accounts
for managing distrib node 20-3
for product installation 11-1, 11-2
ftp 20-3, 20-8
separate by product category 11-2
the products account 11-1
updadmin 20-3, 20-5, 20-12, 21-6
wwwadm 20-3, 20-4, 20-7, 20-8

ACTION keyword
"unchain" names as values 33-3
chain names as values 33-3
description 27-4

detailed 31-5, 33-1
UPS command as keyword value 33-1
use in table files 34-1
user-defined values 33-3

actions
"unchain" name as keyword value 33-3
and "unactions" 33-2
called by other actions 33-4
chain name as keyword value 33-3
examples 34-18
functions used in 34-1
overview 31-5, 33-1
processing of 24-9
reference 33-1
undoing chains in table files 33-3
undoing reversible functions 33-2
UPS commands used as 33-1
use in table files 33-1
use in updconfig 31-5
use with "unknown" commands 33-3

add chain to product on distrib node 17-7, 23-33
add product to distrib node 17-3, 23-3, 23-8

using template_product 18-6
add product to KITS 17-3, 23-3, 23-8

special product registration 17-3
add table file to distrib node 17-5

update for existing product 17-6
add ups directory to distrib node

update to existing product 17-6
addAlias function

description 34-2
AFS

$PRODUCTS variable 12-4
$UPS_EXTRA_DIR variable 12-5
configuring local database 12-2
installing into local database 12-5
installing into local products area 12-4
installing product into AFS product area 8-3
local configuration options 12-1
local FUE initialization files 12-3
products requiring special privileges 12-6
providing access to AFS products 12-1
updating /usr/local/bin 12-6
upsdb_list file 12-2
using AFS UPD and installing locally 8-2
using local database with 12-1, 12-2

AFS database
use with local database 5-3

aliases defined by UPS 1-10
announcement of new⁄updated product 17-10
anonymous FTP 7-5

download files from fnkits 7-2

apache product
for distrib node web server 20-5, 20-10

apropos command 38-3
ARCHIVE_FILE keyword 22-47

as set by -T option 24-4
description 27-4, 28-2

AUTHORIZED_NODES keyword 22-47, 30-1
as set by -A option 24-1
description 27-4, 28-2

autostart
configuring UPS to allow 14-1
control files 14-3

permissions 14-4
disabling 14-5
installing product for 14-2
START action 14-3
start script example 36-4
STOP action 14-3
stop script example 36-5
TAILOR action 14-3
ups script 14-1
ups_shutdown script 14-1, 14-2
ups_startup script 14-1, 14-2

B

bin directory of product 16-1, 16-3, 16-5, 18-4, 19-1
description 15-6

bootstrapping CoreFUE
bootstrap script 13-1, 13-5
config.custom file 13-2
configurator script 13-2
customizing configuration 13-3
log file 13-5
predefined configurations

for NT 13-2
for UNIX 13-1

running the procedure 13-5
sample customization 13-4
space requirements 13-1
stage1.sh file 13-1, 13-5
stage2.sh file 13-5
user defined configurations 13-2
user-customized configuration 13-2

C

catman directory 15-7
CATMAN_SOURCE_DIR keyword 22-47

description 27-4
CATMAN_TARGET_DIR keyword 22-47, 30-1

description 27-4
CD-ROM

product distribution 20-14
setup product directly from 22-7

chain
adding product to distrib node 17-3, 23-7
as action in table files 33-3
change (on declared instance) 10-7
current 1-4
declare at product declaration 3-6, 10-2
declare to installed instance 10-4

Index IDX-3

definition 1-4
development 1-4
new 1-4
old 1-4
remove and add new 10-7
remove from instance 10-6
specification in command 25-1
test 1-4
usage 1-5
use in instance matching 26-3
user-defined 1-4

chain files 1-6, 22-79, 29-1
and product removal 10-7
creating 29-1
description 29-1
examples 29-3
information storage format 29-1
instance matching within 26-3
keywords 29-1
overview 27-1

CHAIN keyword 22-47
description 27-4, 29-2

chain names 1-5
chain options 1-5
change a chain 10-7
change product chain on distrib node 17-7
command defaults 1-8
command output formats for ups list 24-7
command syntax 1-8

description 25-1
comment solicitation INT-5
COMMON: keyword 35-3

description 27-4
use in table files 35-3
use in updconfig file 31-2

COMPILE action 37-1
compile script 37-1
COMPILE_DIR keyword 22-47, 27-9

description 27-4, 28-2
COMPILE_FILE keyword 22-47, 27-9

as set by -b option 24-1
description 27-4, 28-2

config.custom file 13-2
configurator script 13-2
configure a product instance 3-9, 22-13

in AFS space 8-5
CONFIGURE action 10-8, 22-80, 36-1
configure script 36-1

for prebuilt binaries 16-5
configuring distribution node 20-1
conventions, notational INT-3
copy a product declaration 22-19
CoreFUE

and AFS 12-1
bootstrapping 13-1
components 12-4, 12-5, 13-1
customizing configuration 13-3
local installation on AFS machine 12-4
predefined configurations

for NT 13-2
for UNIX 13-1

running the bootstrap procedure 13-5
sample bootstrap customization 13-4
space requirements 13-1
user defined configurations 13-2

courtesy links to initialization files 1-9
create a database

checklist for preparation 11-9
on machine running AFS 12-2

cron
use to automate UPP 4-3, 6-4

CURRENT action 36-3
current chain 1-4

as default 1-8
current script 36-3
CVS 17-9

use with template_product 18-8
CYGWIN

bin directory 11-8
perl version 11-7
UPS/UPD installation issues 11-7

D

database (See UPS database)
database configuration file (See UPS configuration file)
database files

chain files 29-1
included comments 27-3
keywords 27-1
location 11-6
ownership 11-3
permisisons 11-3
pointers to directories 11-6
syntax 27-3
UPD configuration file 31-1
UPP subscription file 32-1
UPS configuration file 30-1
version files 28-1

database on distrib node
file permissions 20-7
host-based access restriction 20-6
user-based access restriction 20-6

database selection algorithm 5-2, 26-1
database specification in commands 25-4
dbconfig file (See UPS configuration file)
dbconfig.template file 30-1

listing 30-2
declare a chain to an instance 3-6, 10-2, 22-21
declare a product 3-5, 10-1, 22-21

after download via FTP 3-5, 10-1
as part of installation 5-1
declare chain at same time 3-6, 10-2
node/flavor-specific functions present 10-4
specifying ups dir and table dir 3-5, 10-2
to local database 7-4

DECLARED keyword 10-6, 22-47
description 27-4, 28-2, 29-2

DECLARER keyword 10-6, 22-47
description 27-4, 28-2, 29-2

defaults for UPS/UPD commands 1-8
Also see command reference chapters

delete product component from distrib node 17-8
delete product from distrib node 17-8

using template_product 18-8
dependencies

and unsetup command 22-11
conflict resolution 35-4

IDX-4 Index

cross-database support for 1-5
database selection for install 5-3
definition 1-5
finding them for a product 2-7
list using ups depend 2-7
multiple levels of 1-5
non-UPS products 35-4
on distribution node, list using upd depend 4-5
order of product setups 35-5
setupOptional function in table file 35-4
setupRequired function in table file 35-4

dependency matching 26-2
DESCRIPTION keyword 22-47

description 27-4, 28-2, 29-2
determine if product update needed

using upd install -s 10-13
using upd update -s 10-13
using upp 10-13

development chain 1-4
use during product development 16-2

distributing UPS products
announcement policies for new products 17-10
overview 17-1
to KITS (checklist) 19-3
to KITS (using template_product) 19-3

distribution node
~ftp area 20-4
access restrictions on database

host-based 20-6
user-based 20-6

configuration and management 20-1
configure and manage 20-1
fnkits.fnal.gov 3-2, 7-2
FTP server 20-1

configuration 20-7
KITS database (on fnkits.fnal.gov) 3-2
limiting product distribution 20-11
nodes other than fnkits 7-4
option_list product description 20-12
reporting on FTP and Web accesses 20-10
response to upd addproduct command 20-2
response to UPD commands 20-1
response to upd install command 20-2
response to upd modproduct command 20-2
restrict downloads from database 20-11
restrict uploads to database 20-11
updconfig pre and postdeclare actions 20-10
user accounts 20-3
web server 20-1

configuration 20-5
doc directory 15-7
documentation for products 15-7
doDefaults function

description 34-3

E

editing database files 10-11
END: keyword 35-3

description 27-4
use in table files 35-3
use in updconfig file 31-2

envAppend function
description 34-3

environment
and usage of command options 25-4
changes made by UPS 1-10
initializing for UPS 1-9

envPrepend function
description 34-4

envRemove function
description 34-4

envSet function
description 34-5

envSetIfNotSet function
description 34-5

envUnset function
description 34-5

examples directory 15-7
exeAccess function

description 34-6
exeActionOptional function

description 34-6
use to call another action 33-4

exeActionRequired function
description 34-6
use to call another action 33-4

execute function
description 31-6, 34-7
use in dbconfig 31-6

F

Fermi UNIX Environment
initializing 1-9

FermiTools INT-2, 4-6, 7-1, 7-2, 21-3
FILE keyword 30-1

description 27-5, 28-2, 29-2
file ownership

considerations 11-3
database files 11-3
product files 11-3

file permissions
configuring UPD to set (product files) 11-2
database files 11-3
extra security 11-3
unwound tar files 11-2

file system semantics
and group ids 11-2
Berkeley 11-2
setting 11-2
System V 11-2

fileTest function
description 34-7

flavor
ANY, as used in flavor matching 26-4
definition 1-3
NULL 1-3
specification in KITS 1-3

FLAVOR keyword 22-47
description 27-5, 28-2, 29-2
value ANY 35-3

flavor levels 2-2, 24-7
flavor of machine, determining 2-1, 22-35

Index IDX-5

flavor specification
(-f, -H and number options) 1-3
use in instance matching 26-3

flavor table 24-7
definition 2-2, 22-36

flavor.products file 14-3, 14-5
permissions 14-4

fnalonly products 21-3
fnkits.fnal.gov distribution node 4-1

adding products to 23-8
anonymous FTP for downloading products 7-1, 7-2
config file locations 21-6
database location 21-6
directory hierarchy 4-6
FermiTools 4-6, 7-1, 7-2
FTP server log file 21-7
ftpgroups file 21-6
KITS database 3-2
KITS product categories 21-3
product pathnames for FTP access 4-7, 4-8
product permissions 4-6
proprietary products 4-8
registration for downloading products 3-2, 7-2
server maintenance 21-6
using FTP to download products 7-1
web server log file 21-7

formatted ups list output 22-45
FTP

declare product after download 3-5, 10-1
downloading product components 7-1
product installation 7-1, 7-2, 7-5

FTP server
access file 20-11
log file on fnkits 21-7
log searcing 20-13
on distrib node 20-1

ftpaccess file 20-7, 20-11
ftpgroups file 21-6
ftpweblog product 20-10
FUE initialization files

courtesy links to 12-3, 12-5, 12-6
for use with AFS 12-3

functions
addAlias 34-2
case (in)sensitivity of 34-1
doDefaults 34-3
envAppend 34-3
envPrepend 34-4
envRemove 34-4
envSet 34-5
envSetIfNotSet 34-5
envUnset 34-5
examples 34-18
exeAccess 34-6
exeActionOptional 34-6
exeActionRequired 34-6
execute 31-6, 34-7
fileTest 34-7
overview 34-1
pathAppend 34-8
pathPrepend 34-8
pathRemove 34-9
pathSet 34-9
preprocessing via compile script 37-1
prodDir 34-9

reference 34-1
reversible 33-2, 34-1
setupEnv 34-10
setupOptional 34-10
setupRequired 34-10
sourceCompileOpt 34-11
sourceCompileReq 34-11
sourceOptCheck 34-12
sourceOptional 34-13
sourceReqCheck 34-13
sourceRequired 34-14
to be added in future 34-17
translation into shell commands 24-9
unAlias 34-14
unProdDir 34-14
unsetupEnv 34-15
unsetupOptional 34-15
unsetupRequired 34-16
use with ACTION keyword 34-1
writeCompileScript 34-16

G

-g option for user-defined chain 1-5
groff command

ascii output 38-6
-man option 38-1
PostScript output 38-6

GROUP: keyword 35-3
description 27-5
use in table files 35-3
use in updconfig file 31-2

H

hardcoded paths problem 15-4
help on UPS/UPD commands 2-1, 10-1
help online

ups help command 22-41
html directory 15-7
HTML_SOURCE_DIR keyword 22-47

description 27-5
HTML_TARGET_DIR keyword 22-47, 30-2

description 27-5

I

include directory 15-7
independent table file 17-5
Info directory 15-7
INFO_SOURCE_DIR keyword 22-47

description 27-5
INFO_TARGET_DIR keyword 22-47, 30-2

description 27-5
init.d directory

location 14-1
initializing UPS environment 1-9

courtesy links to files 1-9

IDX-6 Index

INSTALL_NOTE file 7-1, 15-6, 19-1
configuring product 22-15
mention of node/flavor-specific functions 10-4
mention of unconfigure actions 10-8
sample 16-9

installation methods for UPS products, summary 3-1
installer accounts

choosing 11-1
file system semantics 11-2
multiple 11-1, 11-2
products account 11-1
separate by product category 11-2
setting gid 11-1, 11-2
single 11-1
UPD configuration issues 11-2

installing a product
choose whether to declare qualifiers 3-8
components to download (using FTP) 7-1
configuring 3-9
declare manually after FTP download 7-4
for development/testing 5-3
interruption during install 3-8
into AFS space 8-3
into private database 11-9
KITS product categories 17-3
KITS special product registration 17-3
local install using AFS UPD 8-2
onto distrib node 17-3
pass options to local declare 5-2
procedural checklist when using UPD 5-3
products requiring special privileges 8-1, 12-6
root privileges 12-6
table file product 17-5
tailoring 3-9, 22-67, 22-69
troubleshooting 9-1, 10-17
ups installasroot command 12-6
using FTP 7-1, 7-2, 7-4
using UPD 5-1
using UPP 6-1
with all dependencies (using UPD) 5-5
with different name than on server 3-8
with no dependencies (using UPD) 5-7
with required dependencies (using UPD) 5-7

instance
declare a chain for 10-4
definition 1-4
determine if update needed 10-13
determine instance to act upon 26-1
install and declare 5-1
specification via chain or version 25-4
specify multiple ones in command 25-3
verify integrity of 10-10

instance matching 26-1
in chain file 26-3
in table file 26-3
in updconfig file 31-2
in version file 26-3
use of flavor and qualifiers 26-4

instance selection by chain 1-4
instance specification on command line 25-4
internal command processes 24-9

K

-K option
description for use with ups list 22-46
keyword arguments 2-3, 22-46
with upd list 4-2
with ups depend or upd depend 2-8, 22-30

keywords 27-1, 28-1
case (in)sensitivity of 27-2
DECLARED 10-6
DECLARER 10-6
definition 27-2
in ups list output 2-3
list with descriptions 22-47, 27-3
list with file types 27-3
MODIFIED 10-6, 10-13
MODIFIER 10-6
overriding values 27-3
syntax 27-2, 27-8
use of @ symbol 22-46
used with -K option in ups list 2-3
user-defined 27-2

KITS 4-1
adding products to 23-8
dbconfig file 21-1
FermiTools 7-1, 21-3
fnalonly products 21-3
product categories 21-3, 23-8
product registration for special categories 21-3
proprietary products 21-3
registration 4-6, 7-2
updconfig file 21-2
updconfig pre and postdeclare actions 21-4
using FTP to download products 7-1
US-only products 21-3

KITS distribution database 17-3

L

lib directory 15-7
licensed products

permissions 11-3
link for hard-coded paths 36-2
links to initialization files 1-9
list all current products 22-49
list all fields for a product 2-6, 22-51
list dependencies on distribution node 4-5, 23-15
list product dependencies 2-7, 22-27
list products in database 2-4, 22-49
list products on distribution node 23-31

use in troubleshooting product installs 9-1
location of database files 11-6
location of product files, considerations 11-4, 11-5

M

man directory 15-7
man -k command 38-3

Index IDX-7

man page
ascii output 38-6
convert to html 38-6
determine directory for 11-6
file names 38-1
groff 38-1
information categories 38-3
location of files 38-1
nroff 38-1
nroff output file 38-5
nroff source file 16-3, 38-4
PostScript output 38-6
section numbers 38-1

MAN_SOURCE_DIR keyword 22-47
description 27-5

MAN_TARGET_DIR keyword 22-47, 30-2
description 27-5

man2html command 38-6
managing distribution node 20-1
matching product instance

in chain file 26-3
in table file 26-3
in updconfig file 31-2
in version file 26-3
use of flavor and qualifiers 26-4

MODIFIED keyword 10-6, 22-47
description 27-5, 28-2, 29-2
updating 22-71
used to determine if update needed 10-13

MODIFIER keyword 10-6, 22-47
description 27-5, 28-2, 29-2
updating 22-71

multiple databases
adding a private database 11-9
AFS and local 8-2
and your UPD configuration 3-4
configuring UPD for 31-9
database selection algorithm 26-1
default database 1-8
how UPD selects a database 5-2, 26-1
reasons for using 11-6
specifying $PRODUCTS 1-8, 25-2
support for 1-6
-z option for specifying database 24-5

N

new chain 1-4
news directory 15-7
NEWS_SOURCE_DIR keyword 22-48

description 27-6
NEWS_TARGET_DIR keyword 22-48, 30-2

description 27-6
NFS-mounted database

using local database with 12-1
NIS cluster 12-1
node.products file 14-3, 14-5

permissions 14-4
notational conventions INT-3
nroff command 38-4

for man page 16-3
-man option 38-1, 38-5

NULL flavor 1-3

number options (-0 through -3) 2-2, 22-36
usage information 25-4

O

old chain 1-4
online help

ups help command 22-41
option flags

command-specific info in reference chapters
embedded spaces in arguments 25-2
grouping in commands 25-2
invalid arguments 25-3
multiple arguments 25-2
multiple occurrences 25-3
wildcards 25-4

option usage in commands 25-4
option_list product

description 20-12
order of command line elements 25-1
ORIGIN keyword 22-48

description 27-6, 28-2
OS determination using ups flavor 2-1, 22-36
overlaid products 1-6, 16-7, 27-11
overlays 1-6, 16-7, 27-11

P

parent product determination 10-8, 22-79
parse ups list output

in perl 22-52
in sh script 22-53

pathAppend function
description 34-8

pathPrepend function
description 34-8

pathRemove function
description 34-9

pathSet function
description 34-9

perl
parse ups list output in 22-52
version for use with CYGWIN 11-7

permissions
configuring UPD to set for product files 11-2
database files 11-3
extra security 11-3
on downloaded products 3-7
on files created in distrib database 20-7
unwound tar files 11-2

pointers in database files 11-6
pre-built binary products 16-5

inserting into template_product 18-4
pre-build checklist 19-1

PROD_DIR keyword 22-48, 27-9
as set by -r option 24-4
description 27-6, 28-2

PROD_DIR_PREFIX keyword 3-4, 22-48, 27-9, 30-2
description 27-6

prodDir function
description 34-9

product announcement checklist 19-3

IDX-8 Index

product categories in KITS 17-3
default 21-3
FermiTools 21-3
FNAL only 21-3
proprietary 21-3
registration for special categories 17-3
U.S. only 21-3

product dependencies (See dependencies)
product dependency matching 26-2
product development 16-7

announcement policies for new products 17-10
checklist for building product 19-2
checklist for distributing to KITS 19-3
checklist for pre-build 19-1
checklist for product announcements 19-3
checklist for testing 19-2
code management system 16-6
compile script 37-1
configure script 36-1
configure third-party product 16-6
current script 36-3
declaring product during development 16-2
distributing the product 17-1
documentation location 15-7
example procedure for simple product 16-1
man page creation 16-3
overlaid products 16-7
pre-build checklist with template_product 19-1
pre-built binaries 16-5
prep for rebuilding 16-6
read-only variables 34-18
recommendations

fully-specified flavor 15-1
location determination 15-2
nonuse of /usr/local/bin 15-2
nonuse of /usr/local/products 15-3
reproducible build procedure 15-3
self-containment 15-2
shell-independence 15-1
system-independence 15-3

sample directory hierarchy 16-2
selection of build node 16-7
simple build procedure 16-1
start script 36-3
stop script 36-3
table files 35-1

sample 16-2
tailor script 36-3
testing product 16-4, 18-5
third-party products 15-3
uncurrent script 36-3
unflavored scripts 16-4
using template_product 18-1
vendor-supplied products, rebuilding 16-6

product development tools
buildmanager 15-5
CVS 15-5
template_product 15-6

product distribution
announcement policies for new products 17-10
overview 17-1
using template_product 18-1, 18-6
via CD-ROM 20-14

product distribution node (See distribution node)
product documentation 15-7

product files
configure UPD to set location 11-4, 11-5
location 11-4, 11-5
ownership 11-3
permissions 11-3

product flavor 1-3
product installation (See installing a product)
product instance (see instance)
product instance matching (See instance matching)
PRODUCT keyword 22-48

description 27-6, 28-2, 29-2
product registration for KITS 21-3
product removal (See remove a product)
product root directory 15-6

definition 1-3
locate using ups list -K 22-52
simple example of structure 16-2

product use statistics 27-9
product version 1-3
products account 11-1
products area 3-4

adding a new one 11-9
as set in UPD config 3-4
choosing location 11-4
defining during UPS bootstrap 13-2
for development⁄testing 11-9
for KITS 21-1
PROD_DIR keyword 27-6, 28-2
PROD_DIR_PREFIX keyword 27-6
structure of product root directory 15-6
unwind product tar files into 7-3

products for use only at FNAL 21-3
products for use only in U.S. 21-3
products requiring build 16-6

build script recommendations 15-3
inserting into template_product 18-4
pre-build checklist 19-1

proprietary products 21-3
on fnkits 4-8

Q

qualifiers
choosing whether to declare them 3-8
description 24-8
mixing required and optional 24-9
optional 24-9
overview 1-4
required 24-8
use in instance matching 26-4

QUALIFIERS keyword 22-48
description 27-6, 28-3, 29-2

R

reader comment solicitation INT-5
README file 7-1, 15-6, 19-1

sample 16-8
read-only variables 34-18

PRODUCTS 34-19
to be added in future 34-21
UPS_COMPILE 34-19

Index IDX-9

UPS_EXTENDED 34-19
UPS_OPTIONS 34-19
UPS_ORIGIN 34-19
UPS_OS_FLAVOR 34-19
UPS_PROD_DIR 34-19
UPS_PROD_FLAVOR 34-19
UPS_PROD_NAME 34-19
UPS_PROD_QUALIFIERS 34-19
UPS_PROD_VERSION 34-19
UPS_THIS_DB 34-19
UPS_UPS_DIR 34-20
UPS_VERBOSE 34-20

rebuilding product 16-7
registering products for KITS 21-3
RELEASE_NOTES file 19-1

sample 16-9
remove a product 10-7, 22-79

unconfiguring 10-9
using UPP 10-8, 10-10
using ups undeclare command 10-8, 22-77

remove a product component
from distrib node 17-8

remove access to product 2-10, 22-11
remove product from distrib node 17-8

using template_product 18-8
retrieve file or dir from distribution node 10-15
retrieve product from distribution node 5-1
reversible functions 33-2

definition 34-1

S

searchlog.cgi script 20-13
selecting database for dependency install using UPD 5-3
selecting database for product install using UPD 5-2
setup command 1-1, 2-8, 22-5

associated environment variables 22-5
for chained instance 2-9
for current instance 2-9
for unchained instance 2-9
reference 22-3
special options 2-9
test if setup would succeed 10-16, 22-33
use in troubleshooting problem installations 9-1, 10-17
-v option for use in troubleshooting 9-1, 10-17

setupEnv function
description 34-10

setupOptional function
description 34-10
use to define dependencies 35-4

setupRequired function
description 34-10
use to define dependencies 35-4

setups.[c]sh files 1-9
courtesy links to 12-3
determine directory for 11-6
pointers to 11-6

SETUPS_DIR keyword 22-48, 30-2
description 27-6

sh
parse ups list output in a scipt 22-53

shell script products
inserting into template_product 18-4
pre-build checklist 19-1

simulate command 9-1, 10-17
source code

revision tracking 17-9
storage in CVS 17-9, 18-8

sourceCompileOpt function
description 34-11

sourceCompileReq function
description 34-11

sourceOptCheck function
description 34-12

sourceOptional function
description 34-13

sourceReqCheck function
description 34-13

sourceRequired function
description 34-14

src directory 15-7
stage1.sh file 13-1, 13-5
stage2.sh file 13-5
stanzas

table file 35-1
UPD config file 31-1
UPP subscription file 6-1, 32-2

START action 36-3
start script 14-3, 36-3
statistics

how to gather 11-10, 27-9
output 27-10

STATISTICS keyword 22-48, 30-2
as set by -L option 24-3
description 27-6, 28-3
detailed description of use 27-9
output from 27-10

STOP action 36-3
stop script 14-3, 36-3
subscription file for UPP

creating 6-1
reference 32-1
sample for product installation 6-3

SUFFIX keyword 20-9, 20-10
syntax of UPS/UPD commands 1-8, 25-1

T

table files 1-6
compile script used with 37-1
detailed description 35-1
examples

action present for some instances only 35-8
execute one action or another 35-8
grouping 35-6
use of FLAVOR=ANY 35-6
with user-defined keywords 35-7

grouping information in 35-3
information storage format 27-2
instance matching within 26-3
keywords 27-2
locate using ups list -K 22-52
location specification 28-5
naming 35-1

IDX-10 Index

ordering elements in 35-3
overwrite 10-14
read-only variables available for use in 34-18
recommendations to developers 35-2
sample for simple product 16-2, 16-4
stanzas 35-1
structure and contents 35-2
test if needs update 10-13
undoing reversible functions 33-2
-V option for debugging 24-9

TABLE_DIR keyword 22-48
description 27-6, 28-3

TABLE_FILE keyword 22-48, 27-10
description 27-6, 28-3

tailor a product instance 3-9, 22-69
TAILOR action 3-9, 22-67, 22-69, 36-3
tailor script 36-3
tar file creation

by upd addproduct 17-1, 23-7
using template_product 18-5

template_product 15-6, 17-2
adding build instructions 18-4

to top-level Makefile 18-4
checklist for building product 19-2
checklist for distributing to KITS 19-3
checklist for pre-build 19-1
cloning 18-2
customizing product tar file 18-5
downloading 18-2
editing top-level Makefile 18-3
inserting pre-built binaries 18-4
inserting product requiring build 18-4
inserting shell scripts 18-4
inserting your product 18-4
Makefile (top-level) 18-3
overview 18-1
removing product from distrib node 18-8
running a build procedure 18-4

temporary script
prevent deletion 24-9

test chain 1-4
test directory 15-7
testing products 18-5

checklist 19-2
third-party products 15-3
toInfo directory 15-6
toman directory 15-6

U

umask 3-7
unAlias function

description 34-14
unchain

as action in table files 33-3
replace chain on distrib node using upd modproduct

17-7
use ups undeclare to remove chain 10-6, 22-77

UNCONFIGURE action 10-9, 22-75, 36-1
unconfigure script 36-1
UNCURRENT action 36-3
uncurrent script 36-3
undeclare a chain 10-6, 22-77

undeclare a product instance 10-7, 22-79
using UPP 10-8
using ups undeclare command 10-8

undoing chains in table files 33-3
unflavored scripts 16-4
UNIX Product Distribution

overview 1-1
UNIX Product Poll 32-1

overview 1-1
UNIX Product Support

overview 1-1
unknown command handler

description 33-3
unProdDir function

description 34-14
unsetup command 2-10, 22-11

$SETUP_UPS variable 1-10
behavior with dependencies 22-11
reference 22-9
use of $SETUP_<PRODUCT> variable 22-6, 22-11

unsetupEnv function
description 34-15

unsetupOptional function
description 34-15

unsetupRequired function
description 34-16

UNWIND_ARCHIVE_FILE keyword 20-9, 20-10
description 27-6
use in updconfig 31-4

UNWIND_PROD_DIR keyword 3-4
description 27-7
use in updconfig 31-3

UNWIND_TABLE_DIR keyword
description 27-7
use in updconfig 31-4

UNWIND_UPS_DIR keyword
description 27-7
use in updconfig 31-3

UPD
command syntax 1-8
configuration file

info for installers 3-3
overriding default 3-4
reference 31-1

overview 1-1
procedural checklist for installation 5-3

upd addproduct command
adding table file product 17-5
adding typical product 17-3
chains 17-3, 23-7
detailed functions 20-2
internal processes 23-8
reference 23-3
response of distrib node 20-2
tar file creation 17-1, 23-7

upd cloneproduct command
reference 23-11

UPD commands
defaults 1-8
dependency matching 26-2
instance matching 26-1
interaction with distrib node 20-1
option flag grouping 25-2
option usage 25-4
order of command line elements 25-1

Index IDX-11

specifiying version/chain 25-1
specifying multiple products 25-3

UPD configuration file 27-3
AFS issues 8-2
distrib node 20-9

KITS database pre and postdeclare actions 21-4
pre and postdeclare actions 20-10

examples 31-7
AFS 31-10
distrib node config 31-10
distribution from fnkits 31-8
mulitple dbs and distrib nodes 31-9

for KITS database 21-2
info for installers 3-3
organization 31-1
overriding default 3-4, 31-1
overview 27-1
pre and postdeclare actions 31-5
product matching 31-2
reference 31-1
required location definitions 31-3
sample location definitions 31-5
setting file permissions 11-3
stanzas 31-1

upd delproduct command 17-8
reference 23-13

upd depend command 4-5
reference 23-15

upd exist command 10-16
reference 23-17

upd fetch command 10-15
reference 23-19

upd get command
reference 23-23

upd install command 5-1
database selection 5-2
database selection for dependencies 5-3
detailed functions 20-2
-G (pass options to local declare) 5-2, 23-28
internal processes 23-29
procedural checklist for installation 5-3
reference 23-25
response of distrib node 20-2
summary of functions it performs 3-1
syntax and commonly used options 5-1, 23-25
use to determine if product update needed 10-13

upd list command 4-1
reference 23-31

upd modproduct command 17-6, 17-7
reference 23-33
response of distrib node 20-2

upd move_archive_file script 20-2
upd moved_ups_dir script 20-2
_UPD_OVERLAY keyword 16-7, 27-11

description 27-8
upd repproduct command

reference 23-39
upd update command 10-13, 10-14

reference 23-41
upd verify command

reference 23-45
upd.cgi script 20-2, 20-11

access restrictions 20-6
description 20-5

UPD_USERCODE_DB keyword 22-48
description 27-7

UPD_USERCODE_DIR keyword 3-4, 22-48, 30-2
description 27-7
on fnkits 21-2

update product
determine if update needed 10-13
using UPD 10-13
using UPP 10-13

updconfig file (see UPD configuration file)
updconfig.template file 31-1, 31-7
updusr.pm file 31-1
upgrading UPS installation 11-8
UPP

automate upp command via cron 6-4
command syntax 6-4
monitor products on distribution node 4-3
notification of update needed 4-3, 10-13
overview 1-1
remove a product 10-8, 10-10
subscription file

creating 6-1
definition 4-3
sample for product installation 6-3

uses 32-1
upp command 4-3, 6-1

automation via cron 6-4
reference 23-47
syntax 4-4, 6-4

UPP subscription file
adding instructions 32-2
available functions 32-3
creating 6-1
definition 4-3
header description 32-1
instance matching 32-2
reference 32-1
sample 32-3
sample for product installation 6-3
stanza description 32-2

UPS
aliases defined 1-10
benefits of methodology 1-2
chains 1-4
command syntax and defaults 1-8
database 1-1
database directory specification 1-10
motivation for methodology 1-2
multiple database support 1-1
multiple product flavor support 1-3
multiple product version support 1-2, 1-3
overview 1-1
pointer to product root directory ($UPS_DIR) 1-10
product instance 1-4
product version 1-3
products distributed and managed by 1-3
upgrading your UPS installation 11-8
use without a database 1-7, 11-7

UPS commands
"-?" for usage information 2-1
"uncommands" as action keyword values 34-1
as ACTION keyword 33-1
database selection 26-1
defaults 1-8
dependency matching 26-2

IDX-12 Index

instance matching 26-1
keeping statistics on 11-10, 27-9
option flag grouping 25-2
option usage 25-4
order of command line elements 25-1
specifying multiple products 25-3
specifying version/chain 25-1

UPS configuration file 27-3
defining directory locations in 11-6
for KITS database 21-1
for local database on fnkits 21-1
keywords used in 30-1
overview 27-1
reference 30-1
sample 30-2

ups configure command 3-9
reference 22-13

ups copy command 22-19
reference 22-17

UPS database
$PRODUCTS variable 1-10
$UPS_EXTRA_DIR variable for AFS 12-5
.updfiles subdirectory 1-6
.upsfiles subdirectory 1-6
checklist for creating a database 11-9
choosing single or multiple 11-6
configuring local to work with AFS 12-2
create a private database 11-9
create local database to work with AFS 12-2
declare a product instance to 3-5, 10-1
declaring products into local (not AFS) 12-4
definition 1-6
for development/testing 11-9
installing products into local (not AFS) 12-5
list all current products in 2-4
list product information 2-2
listed in upsdb_list file 12-2
multiple (See multiple databases)
NFS mounted 12-1
permissions for files (distrib node) 20-7
providing access to multiple databases 12-2
setting up your own 5-3

with AFS 12-2
standard naming conventions for use with AFS 12-2
structure and contents 1-6
using AFS and local 5-3
using UPS without a database 1-7, 11-7

UPS database files 1-6
chain files 1-6, 29-1
check for inconsistencies 10-10
editing 10-11
keywords 27-1
overview 27-1
UPD configuration file 31-1
UPS configuration file 30-1
version files 1-6, 28-1

ups declare command 3-6, 10-3
as used internally by upd install 5-2
reference 22-21
specifying database 3-5, 10-2
specifying table file path 3-5, 10-2
specifying ups directory 3-5, 10-2
syntax and common options

for declaring chain 10-4
for declaring instance 3-5, 7-4, 10-2

use during development 16-2
use to declare chain 10-4
use to declare instance 3-5, 10-1

ups depend command 2-7, 10-8, 22-79
reference 22-27

ups directory 3-5, 7-1, 10-2, 15-6, 27-11
description 15-6
locate using ups list -K 22-52
overwrite 10-14
test if needs update 10-13

UPS environment (See environment)
ups exist command 10-16, 22-33

reference 22-31
ups flavor command 2-1

-H option (specifies other flavor) 22-36
-l option (returns flavor table) 22-36
number options (specify OS level) 2-2
obtain flavor levels 2-2
obtain flavor table 2-2
reference 22-35

ups get command
reference 22-39

ups help command
reference 22-41

UPS initialization file 11-6
ups installasroot command 12-6
ups list command 2-2, 3-6, 10-3, 10-5

condensed output 2-3, 22-46
default output fields 22-45
for db managers and product installers 27-1
formatted output 2-3, 22-45
-K option

for script-readable format 2-3, 22-46
keyword arguments 22-46
use to locate product files 22-52

keywords for -K option 2-3
list all current products 2-4
list all output fields 2-6
long listing 22-51
parse output

in perl 22-52
in sh script 22-53

reference 22-43
ups modify command

editing database files 10-11
reference 22-55

UPS product overlay (See overlays)
UPS product requirements (See dependencies)
UPS products

accessibility 10-16
announcement policies 17-10
bin directory 15-6
build and distribute using template_product 18-1
catman directory 15-7
compilation options 1-4
definition 1-3
directory structure 15-6
distribution restrictions 20-11
distribution via CD-ROM 20-14
doc directory 15-7
documentation storage 15-7
examples directory 15-7
files and directories to include 19-1
hardcoded locations 15-3
html directory 15-7

Index IDX-13

include directory 15-7
Info directory 15-7
INSTALL_NOTE file 15-6
installation methods, summary 3-1
installed with different name than on server 3-8
interruption during installation 3-8
lib directory 15-7
list on distribution node 4-1
man directory 15-7
news directory 15-7
overlays 16-7
permissions set at installation 3-7
proprietary products

on fnkits 4-8
qualifiers 1-4
README file 15-6
special categories, flagging 20-12
src directory 15-7
support levels 17-10
test directory 15-7
third-party 15-3
toInfo directory 15-6
toman directory 15-6
ups directory 7-1, 15-6, 27-11

ups script 14-1
ups setup command (for troubleshooting) 9-1, 10-17
ups start command 14-2, 14-5

reference 22-59
usage in autostart 14-3

ups stop command 14-2
reference 22-63
usage in autostart 14-4

ups tailor command 3-9, 22-69
reference 22-67

ups touch command
reference 22-71

ups unconfigure command 10-7, 10-9, 22-79
reference 22-73

ups undeclare command
reference 22-77
remove chain 10-6, 22-77
remove product instance 10-7, 10-8, 22-79
syntax and common options

for chain removal 10-6
for product removal 10-8

-y and -Y options to remove root directory 10-8
ups verify command 10-10

reference 22-81
run by ups modify 10-11
use in troubleshooting problem installations 9-1, 10-17

ups.cgi script 20-2
description 20-5

UPS/UPD/UPP installation components 1-1
UPS_ARCHIVE_FILE keyword 20-9, 20-10

description 27-7
UPS_ARCHIVE_FILES keyword

use in updconfig 31-4
UPS_DB_VERSION keyword 30-2

description 27-7, 28-3, 29-2
UPS_DIR keyword 22-48, 27-11

as set by -U option 24-5
description 27-7, 28-3

UPS_EXTENDED variable 24-7

UPS_PROD_DIR keyword 3-4
description 27-7
use in updconfig 31-3

ups_shutdown script 14-1, 14-2, 14-5
ups_startup script 14-1, 14-2, 14-5
UPS_TABLE_DIR keyword

description 27-7
use in updconfig 31-3

UPS_TABLE_FILE keyword
description 27-8
use in updconfig 31-4

UPS_THIS_DB keyword
description 27-7
use in updconfig 31-3

UPS_UPS_DIR keyword
description 27-8
use in updconfig 31-3

upsdb_list file 12-2
for AFS 12-5

upsdb_list variable 13-3
ups-decl.cgi script 20-2, 20-11

access restrictions 20-6
description 20-5

user comment solicitation INT-5
USER keyword

description 27-8
user-defined chains 1-4
user-defined commands 33-3
user-defined keywords 27-2
US-only products 21-3

V

variables (read-only) defined within UPS 34-18
vendor-supplied products

rebuilding 16-6
verbose command output (-v) 9-1, 10-17
version files 1-6, 22-79

and product removal 10-7
creating 28-1
description 28-1
examples 28-3
information included in 28-1
information storage format 28-1
instance matching within 26-3
location 28-1
overview 27-1
table location specification in 28-5

VERSION keyword 22-48
description 27-8, 28-3, 29-2

version of product 1-3
version specification in commands 25-1

W

web server
access file 20-11
log file on fnkits 21-7
on distrib node 20-1
prerequisites for cgi scripts 20-7

IDX-14 Index

writeCompileScript function
description 34-16

www
download products from 16-5

